期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于InMPE和MFO-SVM的变负载滚动轴承故障诊断 被引量:3
1
作者 袁建明 刘宇 +1 位作者 胡志辉 王磊 《机电工程》 CAS 北大核心 2023年第8期1185-1193,共9页
由于在变负载工况下,提取滚动轴承故障特征较为困难,且其故障识别准确率也较低,为此,提出了一种基于插值多尺度排列熵(InMPE)和飞蛾火焰优化支持向量机(MFO-SVM)的滚动轴承故障诊断方法。首先,在粗粒化时采用三次样条插值代替传统多尺... 由于在变负载工况下,提取滚动轴承故障特征较为困难,且其故障识别准确率也较低,为此,提出了一种基于插值多尺度排列熵(InMPE)和飞蛾火焰优化支持向量机(MFO-SVM)的滚动轴承故障诊断方法。首先,在粗粒化时采用三次样条插值代替传统多尺度排列熵(MPE)中的线性插值,设计了InMPE算法,利用美国凯斯西储大学(CWRU)轴承数据集,分析了不同序列长度、嵌入维数和负载对InMPE的影响;然后,使用飞蛾火焰算法(MFO)优化了支持向量机(SVM),构建了基于InMPE和MFO-SVM的故障诊断模型;最后,搭建了轴承故障诊断试验台,制作了变负载工况下滚动轴承故障特征样本集,对基于InMPE与MFO-SVM的故障诊断方法的有效性和先进性进行了验证。研究结果表明:在变负载工况下,采用基于InMPE与MFO-SVM方法所得的故障识别准确率达到了98.5%,而采用传统MPE方法所得的故障识别准确率为95.9%;在噪声背景下,采用基于InMPE与MFO-SVM方法所得的识别准确率为92.4%,优于后者的80.0%准确率;证明基于InMPE与MFO-SVM的方法能有效识别出滚动轴承的故障信息,且对噪声具有较好的鲁棒性。 展开更多
关键词 滚动轴承 故障诊断 变负载工况 多尺度排列 插值多尺度排列熵 飞蛾火焰算法 支持向量机
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部