期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进ResNet-CrowdDet的密集行人检测算法 被引量:2
1
作者 韩文静 何宁 +1 位作者 刘圣杰 于海港 《计算机工程与应用》 CSCD 北大核心 2023年第16期196-204,共9页
行人检测在自动驾驶、客流量统计、智能监控等很多领域被应用。这些场景中行人大多是密集的,存在多尺度、多姿态和遮挡等问题,使得目前的密集行人检测算法存在检测精度较低、漏检率较高等问题。基于ResNet-50-FPN的CrowdDet算法可以解... 行人检测在自动驾驶、客流量统计、智能监控等很多领域被应用。这些场景中行人大多是密集的,存在多尺度、多姿态和遮挡等问题,使得目前的密集行人检测算法存在检测精度较低、漏检率较高等问题。基于ResNet-50-FPN的CrowdDet算法可以解决密集遮挡问题,在CrowdHuman数据集上得到了很好的结果。以此为基线检测器,提出了改进算法。该算法包含两个模块,即BoINet(bottleneck involution network)的骨干网络和DHCDet(doublehead CrowdDet)的稀疏检测头部。与只使用了具有局域性和学习到静态参数的卷积的基线ResNet不同,BoINet将能够远距离交互的Involution动态卷积纳入到提取特征的任务中,增强行人特征的表达能力;DHCDet使用了DoubleHead结构改进CrowdDet算法,并将Double-Head中的自注意力机制NL(non-local)替换为SNL(spectral non-local),进一步提升检测器的分类与回归的性能。该改进方法在CrowdHuman数据集上AP为91.15%,MR-2为39.74%,同时JI为83.60%,取得了比基线检测器更好的检测精度和更低的漏检率。 展开更多
关键词 密集行人检测 增强特征表达 BoINet 提升分类回归性能 DHCDet
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部