期刊文献+
共找到97篇文章
< 1 2 5 >
每页显示 20 50 100
应用掩码区域卷积神经网络的文本检测模型
1
作者 赵小薇 季明辉 +1 位作者 徐秀娟 沈家乐 《应用科学学报》 CAS CSCD 北大核心 2023年第3期527-540,共14页
要:提出一种基于掩码区域卷积神经网络的文本检测模型。首先从扩大模型感受野并尽可能保持模型效率的角度出发,针对残差神经网络中的瓶颈结构进行优化,构建基于结构优化的残差神经网络(residual network based on structural optimizati... 要:提出一种基于掩码区域卷积神经网络的文本检测模型。首先从扩大模型感受野并尽可能保持模型效率的角度出发,针对残差神经网络中的瓶颈结构进行优化,构建基于结构优化的残差神经网络(residual network based on structural optimization,ResNetSO);然后去除冗余特征以提高融合后特征质量,并将空间注意力机制应用于特征金字塔网络,构建了基于下层特征指导的特征金字塔网络(feature pyramid network based on lower feature guidance,FPNetLFG)。在两个公开数据集上的实验结果表明:包含ResNetSO和FPNetLFG两个模块的模型应用在级联区域卷积神经网络、递归特征金字塔和可切换空洞卷积的目标检测模型中,分别可以带来0.8%和0.3%左右的F1值提升,从而说明了该方法的有效性和普遍适用性。 展开更多
关键词 文本检测 掩码区域卷积神经网络 主干网络 结构优化 特征金字塔网络
在线阅读 下载PDF
基于融合卷积神经网络的车辆多目标检测方法
2
作者 曹佳 郑秋梅 段泓舟 《激光杂志》 北大核心 2025年第1期208-213,共6页
在实际场景中,车辆目标往往会被其他车辆、建筑物等对象遮挡,背景也可能非常复杂,为了保障检测精度,提出一种基于融合卷积神经网络的车辆多目标检测方法。采用激光雷达采集车辆目标图像,将采集的车辆行驶图像根据其车道线特征划分为两... 在实际场景中,车辆目标往往会被其他车辆、建筑物等对象遮挡,背景也可能非常复杂,为了保障检测精度,提出一种基于融合卷积神经网络的车辆多目标检测方法。采用激光雷达采集车辆目标图像,将采集的车辆行驶图像根据其车道线特征划分为两侧区域,将车道线以内的区域作为车辆多目标检测初始感兴趣区域(ROI),在ROI中采用车底阴影假设区域分割法获取车辆检测目标的假设区域。在原始卷积神经网络的基础上作进一步优化,设计可变形卷积神经网络(DF-R-CNN)模型,将得到的假设区域作为网络模型所需的车辆多目标检测候选区域,通过该模型实现车辆多目标的精准检测。实验结果表明,所提方法的召回率最高值达到了85%,损失函数最低值约为1.8,说明其具有较高的检测精度和检测效果。 展开更多
关键词 卷积神经网络 车道线划分 感兴趣区域ROI 可变形卷积神经网络 车辆多目标检测
在线阅读 下载PDF
基于改进掩码-区域卷积神经网络的混凝土病害实例分割 被引量:5
3
作者 黄彩萍 谢鑫 +1 位作者 周永康 李桂龙 《桥梁建设》 EI CSCD 北大核心 2023年第6期63-70,共8页
为对混凝土病害图像进行更精确的实例分割,提出改进掩码-区域卷积神经网络(Mask Region Convolution Neural Network,Mask-RCNN)。该网络采用轻量级的可移动网络(MobileNetV2)代替原始Mask-RCNN中卷积层过大的主干网络——残差网络(ResN... 为对混凝土病害图像进行更精确的实例分割,提出改进掩码-区域卷积神经网络(Mask Region Convolution Neural Network,Mask-RCNN)。该网络采用轻量级的可移动网络(MobileNetV2)代替原始Mask-RCNN中卷积层过大的主干网络——残差网络(ResNet101),加入路径聚合网络(PANet),以提高Mask-RCNN提取浅层特征信息的能力。为验证改进Mask-RCNN的识别精度及其在实际工程中的可行性,首先构建多类混凝土病害图像数据集,利用K-means聚类算法确定最适合该数据集的先验边界框的长宽比,然后对比改进Mask-RCNN与原始Mask-RCNN、其它主流深度学习网络对混凝土五类病害(裂缝、露筋、剥落、白皙和空洞)的识别结果;最后利用无人机采集到的钢筋混凝土桥梁病害图像作为测试集进行测试。结果表明:改进Mask-RCNN在提高计算速度的同时能更准确地定位病害,减少了误检和漏检,识别精度高于原始Mask-RCNN及其它深度学习网络;改进Mask-RCNN可以识别无人机拍摄的未经训练的新的混凝土病害图像,识别精度满足实际工程需求。 展开更多
关键词 桥梁工程 混凝土病害 深度学习 掩码-区域卷积神经网络 可移动网络 K-MEANS聚类算法 病害识别
在线阅读 下载PDF
基于改进快速区域卷积神经网络的视频SAR运动目标检测算法研究 被引量:33
4
作者 闫贺 黄佳 +3 位作者 李睿安 王旭东 张劲东 朱岱寅 《电子与信息学报》 EI CSCD 北大核心 2021年第3期615-622,共8页
针对传统视频SAR(ViSAR)运动目标检测方法存在的帧间配准难度大、快速运动目标阴影特征不明显、虚警概率高等问题,该文提出一种基于改进快速区域卷积神经网络(Faster R-CNN)的视频SAR运动目标检测方法。该方法结合Faster R-CNN深度学习... 针对传统视频SAR(ViSAR)运动目标检测方法存在的帧间配准难度大、快速运动目标阴影特征不明显、虚警概率高等问题,该文提出一种基于改进快速区域卷积神经网络(Faster R-CNN)的视频SAR运动目标检测方法。该方法结合Faster R-CNN深度学习算法,利用K-means聚类方法对anchor box的长宽及长宽比进行预处理,并采用特征金字塔网络(FPN)架构对视频SAR运动目标的“亮线”特征进行检测。与传统方法相比,该方法具有实现简单、检测概率高、虚警概率低等优势。最后,通过课题组研制的Mini-SAR系统获取的实测视频SAR数据验证了新方法的有效性。 展开更多
关键词 视频SAR 运动目标检测 快速区域卷积神经网络 特征金字塔网络 K-MEANS
在线阅读 下载PDF
基于可变形卷积神经网络的遥感影像密集区域车辆检测方法 被引量:21
5
作者 高鑫 李慧 +5 位作者 张义 闫梦龙 张宗朔 孙显 孙皓 于泓峰 《电子与信息学报》 EI CSCD 北大核心 2018年第12期2812-2819,共8页
车辆检测是遥感图像分析领域的热点研究内容之一,车辆目标的智能提取和识别,对于交通管理、城市建设有重要意义。在遥感领域中,现有基于卷积神经网络的车辆检测方法存在实现过程复杂并且对于车辆密集区域检测效果不理想的缺陷。针对上... 车辆检测是遥感图像分析领域的热点研究内容之一,车辆目标的智能提取和识别,对于交通管理、城市建设有重要意义。在遥感领域中,现有基于卷积神经网络的车辆检测方法存在实现过程复杂并且对于车辆密集区域检测效果不理想的缺陷。针对上述问题,该文提出基于端到端的神经网络模型DF-RCNN以提高车辆密集区域的检测精度。首先,在特征提取阶段,DF-RCNN模型将深浅层特征图的分辨率统一并融合;其次,DFRCNN模型结合可变形卷积和可变形感兴趣区池化模块,通过加入少量的参数和计算量以学习目标的几何形变。实验结果表明,该文提出的模型针对密集区域的车辆目标具有较好的检测性能。 展开更多
关键词 遥感影像 车辆检测 密集区域 端到端卷积神经网络
在线阅读 下载PDF
区域生长全卷积神经网络交互分割肝脏CT图像 被引量:6
6
作者 张丽娟 章润 +2 位作者 李东明 李阳 王晓坤 《液晶与显示》 CAS CSCD 北大核心 2021年第9期1294-1304,共11页
由于医疗图像质量差、对比度低、患者之间差异大导致全自动分割方法很难获得足够准确、鲁棒的结果。为了解决全自动分割方法的局限性,本文提出一种基于神经网络改进的区域生长法,并与全卷积神经网络相结合对肝脏CT图像进行交互式分割。... 由于医疗图像质量差、对比度低、患者之间差异大导致全自动分割方法很难获得足够准确、鲁棒的结果。为了解决全自动分割方法的局限性,本文提出一种基于神经网络改进的区域生长法,并与全卷积神经网络相结合对肝脏CT图像进行交互式分割。首先对图像进行预处理,突出待分割肝脏区域;接着计算像素在不同边缘检测算子下的梯度值作为该像素的特征,形成像素特征向量训练网络该网络以一对像素特征向量为输入,以两像素的关联度系数为输出;然后将训练好的神经网络模型作为区域生长算法的生长准则,手动交互选取一点产生分割结果;最后将分割结果作为原图的交互信息和原图灰度通道连接在一起一同输入全卷积神经网络。实验结果表明平均Dice系数达到96.69%,像素准确率达到99.62%,平均交并比达到96.65%。不同的腹部CT图像序列中肝脏的分割结果表明,该方法能精确提取肝脏区域,满足临床应用的需求。 展开更多
关键词 卷积神经网络 区域生长法 交互式分割
在线阅读 下载PDF
基于加速区域卷积神经网络的高铁接触网承力索底座裂纹检测研究 被引量:8
7
作者 刘凯 刘志刚 陈隽文 《铁道学报》 EI CAS CSCD 北大核心 2019年第7期43-49,共7页
针对高速铁路接触网支撑结构中承力索底座裂纹的问题,提出一种利用加速区域卷积神经网络与Beamlet变换相结合的图像检测方法。该方法使用加速区域卷积神经网络实现对承力索底座在待检测图像中的识别定位,然后根据定位的承力索底座图像特... 针对高速铁路接触网支撑结构中承力索底座裂纹的问题,提出一种利用加速区域卷积神经网络与Beamlet变换相结合的图像检测方法。该方法使用加速区域卷积神经网络实现对承力索底座在待检测图像中的识别定位,然后根据定位的承力索底座图像特点,通过Radon变换等预处理操作对承力索底座疑似裂纹区域精确定位,最后使用基于Beamlet变换的局部链搜索算法快速得到裂纹信息,实现承力索底座裂纹故障的可靠诊断。实验表明:该方法能在复杂的接触网支撑与悬挂装置图像中准确定位识别承力索底座裂纹故障,对拍摄距离、拍摄角度以及曝光度等因素具有很好的适应性,且具有较高的检测效率。 展开更多
关键词 高铁接触网 承力索底座 加速区域卷积神经网络 BEAMLET变换
在线阅读 下载PDF
基于图像区域分割和卷积神经网络的电成像缝洞表征 被引量:7
8
作者 张浩 王亮 +3 位作者 司马立强 范玲 郭宇豪 郭一凡 《石油地球物理勘探》 EI CSCD 北大核心 2021年第4期698-706,735,I0007,I0008,共12页
电成像的处理、解释大量依赖人工操作,存在缝洞表征困难等问题。人工操作不但效率低,而且还存在难以消除的人为误差。为此,提出一种基于图像区域分割和卷积神经网络的电成像图像自动识别裂缝、溶蚀孔洞的方法。该方法基于电成像数据,结... 电成像的处理、解释大量依赖人工操作,存在缝洞表征困难等问题。人工操作不但效率低,而且还存在难以消除的人为误差。为此,提出一种基于图像区域分割和卷积神经网络的电成像图像自动识别裂缝、溶蚀孔洞的方法。该方法基于电成像数据,结合Otsu算法与平均法分割阈值,从地层背景中分离裂缝、溶蚀孔洞信息,并应用连通域像素标记法提取独立的连通域缝洞个体;然后,搭建并训练改进的LeNet-5网络模型,以多种地质构造的图像特征为标准制备训练样本集,实现缝洞特征的自动识别;最后,结合常规测井曲线,利用训练后模型的识别结果对图像分类,利用识别和提取的裂缝、溶蚀孔洞结果准确计算有效面孔率等定量评价参数。通过测试模型和实际数据的应用,验证了方法的适用性和合理性。相较于电成像的人工处理手段,该方法能够提高精度(避免人为误差)和处理速度(15s/m),训练模型针对测试集的预测准确率达97.8%,可为缝洞型储层的测井精细解释提供算法支撑。 展开更多
关键词 图像区域分割 卷积神经网络 电成像图像 裂缝 溶蚀孔洞
在线阅读 下载PDF
基于更快区域卷积神经网络的多视角船舶识别 被引量:4
9
作者 程静 王荣杰 +2 位作者 曾光淼 林安辉 王亦春 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2023年第10期1832-1840,共9页
针对在复杂海洋环境下采集船舶多视角图像难度大、不同视角下船舶外观差异显著的问题,本文以自制的不同类型的多艘船舶的多视角图像为数据集训练更快区域卷积神经网络模型,利用平均F1分数、平均精度和平均误检率作为评价指标评估更快区... 针对在复杂海洋环境下采集船舶多视角图像难度大、不同视角下船舶外观差异显著的问题,本文以自制的不同类型的多艘船舶的多视角图像为数据集训练更快区域卷积神经网络模型,利用平均F1分数、平均精度和平均误检率作为评价指标评估更快区域卷积神经网络模型对不同视角船舶的识别性能,并通过识别不同船舶的F1分数和误检率分析更快区域卷积神经网络对不同质量、背景图像的识别能力。实验结果表明,更快区域卷积神经网络识别多角度船舶的平均F1分数为0.6969,平均精度为92.88%,平均误检率为8.34%,即更快区域卷积神经网络对多视角船舶有较高的识别能力,但对于有雾或昏暗环境下的低像素图像识别能力明显下降。 展开更多
关键词 多视角 船舶识别 视觉图像 更快区域卷积神经网络 目标检测 特征提取 深度学习 低分辨率图像
在线阅读 下载PDF
基于区域卷积神经网络Faster R-CNN的手势识别方法 被引量:12
10
作者 张勋 陈亮 +1 位作者 朱雪婷 胡诚 《东华大学学报(自然科学版)》 CAS 北大核心 2019年第4期559-563,共5页
为提升手势识别算法的准确率,引入深度学习中区域卷积神经网络Faster R-CNN (faster region-convolution neural network)。利用该网络的卷积神经网络自动提取手势目标特征,采用RPN(region proposal networks)机制提取候选框以提高搜索... 为提升手势识别算法的准确率,引入深度学习中区域卷积神经网络Faster R-CNN (faster region-convolution neural network)。利用该网络的卷积神经网络自动提取手势目标特征,采用RPN(region proposal networks)机制提取候选框以提高搜索效率,采用Faster R-CNN网络对建议框做目标检测和分类以实现手势端到端的识别。结果表明,该方法能够更加准确高效地完成手势特征提取和分类任务,有效提高手势识别准确率。 展开更多
关键词 区域卷积神经网络 FASTER R-CNN 手势识别 深度学习
在线阅读 下载PDF
基于历史信息的区域卷积神经网络行人检测 被引量:1
11
作者 陆宝红 宋雪桦 《激光技术》 CAS CSCD 北大核心 2019年第5期660-665,共6页
为了解决卷积神经网络在进行连续行人检测时,检测行人速度较慢,达不到实时性要求的问题,采用基于历史信息的区域卷积神经网络行人检测算法,利用前一幅图像中的检测结果对当前图像的检测过程进行优化,将前一帧的检测结果作为对当前帧提... 为了解决卷积神经网络在进行连续行人检测时,检测行人速度较慢,达不到实时性要求的问题,采用基于历史信息的区域卷积神经网络行人检测算法,利用前一幅图像中的检测结果对当前图像的检测过程进行优化,将前一帧的检测结果作为对当前帧提取推荐区域的参考信息,并使用当前帧与前一帧的灰度值差异图对当前图像的卷积特征进行过滤,以缩小滑动窗口检测时的搜索区域。在加州理工学院行人检测数据集上进行了检测实验。结果表明,结合历史信息的算法与先进的算法相比检测速度提升了2.5倍,同时检测准确率提升了1.5%。该算法实现了实时行人检测,设计的网络能有效检测小目标行人。 展开更多
关键词 图像处理 连续行人检测 历史信息 区域卷积神经网络 区域推荐
在线阅读 下载PDF
用卷积神经网络分类最大稳定极值区域实现汉字区域定位 被引量:3
12
作者 张鹏伟 张伟伟 《国防科技大学学报》 EI CAS CSCD 北大核心 2017年第3期91-96,共6页
获取对应笔画级连通区的最大稳定极值区域,实施形态学闭操作融合相距较近的最大稳定极值区域,融合后最大稳定极值区域对应的单个汉字区域;利用灰度共生矩阵描述最大稳定极值矩形区域的纹理信息,将其作为卷积神经网络的输入,卷积神经网... 获取对应笔画级连通区的最大稳定极值区域,实施形态学闭操作融合相距较近的最大稳定极值区域,融合后最大稳定极值区域对应的单个汉字区域;利用灰度共生矩阵描述最大稳定极值矩形区域的纹理信息,将其作为卷积神经网络的输入,卷积神经网络对最大稳定极值区域进行分类,过滤非汉字部分;利用最大稳定极值区域颜色直方图的Bhattacharyya距离等特征对最大稳定极值区域进行聚类,同一类最大稳定极值区域组合得到汉字文本候选区域;再次利用卷积神经网络对候选文本区域进行分类,过滤非文本部分,剩余的就是定位到的汉字文本区域。实验结果表明,该算法对于汉字区域定位具有良好的效果。 展开更多
关键词 汉字区域定位 最大稳定极值区域 卷积神经网络 深度学习 灰度共生矩阵
在线阅读 下载PDF
基于生成对抗网络改进的更快速区域卷积神经网络交通标志检测 被引量:4
13
作者 高忠文 于立国 《汽车技术》 CSCD 北大核心 2020年第7期14-18,共5页
针对小尺寸、远距离的交通标志检测过程中缺少信息的问题,以改进的更快速区域卷积神经网络(Faster R-CNN)检测器为基础,结合生成对抗网络(GAN)的目标检测算法实现对小目标交通标志的检测。Faster R-CNN首先根据期望目标设定合适的锚点数... 针对小尺寸、远距离的交通标志检测过程中缺少信息的问题,以改进的更快速区域卷积神经网络(Faster R-CNN)检测器为基础,结合生成对抗网络(GAN)的目标检测算法实现对小目标交通标志的检测。Faster R-CNN首先根据期望目标设定合适的锚点数量,生成包含小目标的候选区域,再使用生成网络对候选区域中的模糊小目标进行上采样,生成高分辨率图像,最后使用分类损失函数与回归损失函数对判别网络进行改进。试验结果表明,Faster R-CNN和生成对抗网络相结合的检测算法可以提高远距离小目标交通标志检测性能。 展开更多
关键词 交通标志检测 更快速区域卷积神经网络 生成对抗网络 超分辨重建
在线阅读 下载PDF
一种基于卷积神经网络的区域调光技术
14
作者 张涛 刘天威 杜文丽 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2021年第5期624-632,共9页
由于光线串扰,像素补偿算法难以根据提取出的背光信息进行准确补偿,同时,单一补偿曲线难以适应具有不同亮度特点的图像内容,导致补偿图像的平均质量不高.为了提高像素补偿算法对复杂图像内容的适应性,本文引入神经网络中的编码和解码思... 由于光线串扰,像素补偿算法难以根据提取出的背光信息进行准确补偿,同时,单一补偿曲线难以适应具有不同亮度特点的图像内容,导致补偿图像的平均质量不高.为了提高像素补偿算法对复杂图像内容的适应性,本文引入神经网络中的编码和解码思想,通过编码网络提取图像深层特征,在解码网络中利用浅层特征的信息对深层特征进行解码,提出了一种联合分类回归的液晶像素补偿神经网络.实验结果表明,此网络得到的像素补偿图像不仅可以提高图像的主观质量,还在对比度、峰值信噪比等客观指标上取得了较好的效果. 展开更多
关键词 区域调光 背光提取 像素补偿 卷积神经网络 液晶显示器
在线阅读 下载PDF
基于改进的卷积神经网络的病理图片区域分类器
15
作者 叶钧翔 《数字技术与应用》 2019年第7期56-57,共2页
本文对已有的高性能卷积神经网络框架进行修改,简化网络的同时保留原网络的结构特点以及优秀性能,利用IDC数据集训练得到高性能的病理图片区域分类器,可用于实现病理图像区域的自动分割。
关键词 卷积神经网络 病理图片 区域分类
在线阅读 下载PDF
一种基于卷积神经网络的性别识别方法 被引量:8
16
作者 蔡诗威 郭太良 姚剑敏 《电视技术》 北大核心 2014年第19期188-191,共4页
采用人工智能进行性别识别时,人脸图像在获取的时候容易受到光照、遮挡等影响,这些因素给人脸性别识别带来了困难。采用卷积神经网络用于性别识别,并通过扩展网络结构,进一步增强卷积神经网络的分类能力。并且对识别效果进行置信度分析... 采用人工智能进行性别识别时,人脸图像在获取的时候容易受到光照、遮挡等影响,这些因素给人脸性别识别带来了困难。采用卷积神经网络用于性别识别,并通过扩展网络结构,进一步增强卷积神经网络的分类能力。并且对识别效果进行置信度分析,通过设置卷积神经网络的拒识区域来解决拒绝区间的问题。在实际测试中,通过拒绝7.46%的测试样本,达到98.67%的正确识别率。 展开更多
关键词 性别识别 卷积神经网络 拒识区域选择 置信度
在线阅读 下载PDF
基于卷积神经网络的复杂构件内部零件装配正确性识别 被引量:11
17
作者 赵耀霞 吴桐 韩焱 《电子学报》 EI CAS CSCD 北大核心 2018年第8期1983-1988,共6页
X射线成像是解决复杂构件内部零件装配正确性识别的最有效方法,现有特征识别方法是以图像中的连通区域形状、长宽比、面积等特征为目标.虽然检测效果较好,但受机械精度、装配公差、零件错位等因素影响,识别鲁棒性较差.基于此,综合卷积... X射线成像是解决复杂构件内部零件装配正确性识别的最有效方法,现有特征识别方法是以图像中的连通区域形状、长宽比、面积等特征为目标.虽然检测效果较好,但受机械精度、装配公差、零件错位等因素影响,识别鲁棒性较差.基于此,综合卷积神经网络目标分类识别技术与X射线多视角成像技术,首先设计了一个深度卷积神经网络模型,通过深度学习的方法提取特征、训练分类器,对工件内部零件进行分类,输出坐标框,完成工件零件漏装检测.进而针对所识别零件坐标信息;依据CT投影正弦特性,找到与当前检测工件投影角度相符的标准工件投影,完成零件换位、错位等识别.通过实验验证,此方法在自行建立的数据集上完成了对工件内部零件漏缺和换位的识别,鲁棒性较高. 展开更多
关键词 装配识别 卷积神经网络 区域生成网络 X射线多视角 角度匹配
在线阅读 下载PDF
自适应卷积注意力与掩码结构协同的显著目标检测
18
作者 朱磊 袁金垚 +1 位作者 王文武 蔡小嫚 《电子与信息学报》 北大核心 2025年第1期260-270,共11页
显著目标检测(SOD)旨在模仿人类视觉系统注意力机制和认知机制来自动提取场景中的显著物体。虽然现有基于卷积神经网络(CNN)或Transformer的模型不断刷新该领域方法的性能,但较少研究关注以下两个问题:(1)此领域多数方法常采用逐像素点... 显著目标检测(SOD)旨在模仿人类视觉系统注意力机制和认知机制来自动提取场景中的显著物体。虽然现有基于卷积神经网络(CNN)或Transformer的模型不断刷新该领域方法的性能,但较少研究关注以下两个问题:(1)此领域多数方法常采用逐像素点的密集预测方式以获取像素显著值,然而该方式不符合基于人类视觉系统的场景解析机制,即人眼通常对语义区域进行整体分析而非关注像素级信息;(2)增强上下文信息关联在SOD任务中受到广泛关注,但通过Transformer主干结构获取长程关联特征不一定具有优势。SOD应更关注目标在适当区域内其中心-邻域差异性而非全局长程依赖。针对上述问题,该文提出一种新的显著目标检测模型,将CNN形式的自适应注意力和掩码注意力集成到网络中,以提高显著目标检测的性能。该算法设计了基于掩码感知的解码模块,通过将交叉注意力限制在预测的掩码区域来感知图像特征,有助于网络更好地聚焦于显著目标的整体区域。同时,该文设计了基于卷积注意力的上下文特征增强模块,与Transformer逐层建立长程关系不同,该模块仅捕获最高层特征中的适当上下文关联,避免引入无关的全局信息。该文在4个广泛使用的数据集上进行了实验评估,结果表明,该文提出的方法在不同场景下均取得了显著的性能提升,具有良好的泛化能力和稳定性。 展开更多
关键词 显著目标检测 卷积神经网络形式的自适应注意力 掩码注意力 特征增强
在线阅读 下载PDF
基于卷积神经网络的半身裙款式特征分类识别 被引量:9
19
作者 邓莹洁 罗戎蕾 《现代纺织技术》 北大核心 2021年第6期98-105,共8页
针对服装特征分类识别不够全面、较多分类特征导致效果较差的问题,提出一种带有Inception v2模组的快速区域卷积神经网络模型的女装半身裙多特征分类识别方法。建立一个包含8类款式、11种颜色、5种图案、4种长度,共计28种类别标签的女... 针对服装特征分类识别不够全面、较多分类特征导致效果较差的问题,提出一种带有Inception v2模组的快速区域卷积神经网络模型的女装半身裙多特征分类识别方法。建立一个包含8类款式、11种颜色、5种图案、4种长度,共计28种类别标签的女装半身裙样本库;以快速区域卷积神经网络(Faster r-cnn)结构为基础,引入一个Inception v2模组,对半身裙的款式及多种特征进行学习训练,通过全连接层将来自Faster r-cnn主干网络和Inception v2的分类信息进行特征融合并共享损失,以提高算法的准确率;将目标检测框与分类结果一起输出,在对半身裙图像精准定位的基础上实现了半身裙款式及常见特征的分类识别。结果表明:该方法的平均分类准确率为92.8%,可以有效地对女装半身裙款式、特征进行分类识别,并且可用于实际场景的服装图片中。 展开更多
关键词 卷积神经网络 Inception v2模组 快速区域卷积神经网络 女装半身裙
在线阅读 下载PDF
基于卷积神经网络的车辆品牌和型号识别 被引量:2
20
作者 黎哲明 蔡鸿明 姜丽红 《东华大学学报(自然科学版)》 CSCD 北大核心 2017年第4期472-477,共6页
车辆品牌和型号的识别属于细粒度分类领域的一类问题,与只针对不同物体的图像识别相比,待分类的车辆品牌和型号之间差异较小,分类较困难.卷积神经网络在静态图像上具有强大的特征发现能力,近年来在图像分类问题中成果显著.结合卷积神经... 车辆品牌和型号的识别属于细粒度分类领域的一类问题,与只针对不同物体的图像识别相比,待分类的车辆品牌和型号之间差异较小,分类较困难.卷积神经网络在静态图像上具有强大的特征发现能力,近年来在图像分类问题中成果显著.结合卷积神经网络和开源的大量标注数据集设计出了完整的车型识别模型,引入区域分割从而提高了识别的准确率,同时根据移动互联网的特性设计了交互方式.通过试验验证,该方法可以有效地解决查询图片识别具体车辆品牌及型号的问题. 展开更多
关键词 车型识别 细粒度分类 卷积神经网络 区域分割 图像处理
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部