期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于多属性在线评价信息的商品购买推荐排序方法
被引量:
8
1
作者
张瑾
尤天慧
樊治平
《东北大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2019年第1期138-143,共6页
针对支持消费者购买决策,提出了一种基于多属性在线评价信息的商品购买推荐排序方法.在该方法中,首先将消费者关注的备选商品各属性在线评价信息转化为关于属性评价标度的概率分布,并确定备选商品各属性在线评价结果的累积分布函数,进...
针对支持消费者购买决策,提出了一种基于多属性在线评价信息的商品购买推荐排序方法.在该方法中,首先将消费者关注的备选商品各属性在线评价信息转化为关于属性评价标度的概率分布,并确定备选商品各属性在线评价结果的累积分布函数,进而构建加权累积分布函数决策矩阵;然后,依据该决策矩阵,确定正、负理想商品加权累积分布向量,并计算各备选商品与正、负理想商品的加权累积分布向量的距离以及相应的贴近度;进一步地,依据贴近度的大小,可确定备选商品的推荐排序结果.最后,以一个支持消费者购买轿车决策为例说明了该方法的可行性和有效性.
展开更多
关键词
商品购买决策
在线评价信息
概率分布
TOPSIS
推荐排序
在线阅读
下载PDF
职称材料
基于社会信任正则化的排名推荐算法
被引量:
1
2
作者
张俐
《工程科学与技术》
EI
CAS
CSCD
北大核心
2020年第5期201-208,共8页
随着在线商品交易额逐年增大和社交网络不断深入发展,推荐系统已成为解决信息过载的重要工具之一。当评分矩阵数据稀疏性较大时推荐精度就会显著下降,特别是用户冷启动时该问题更加明显。因此,本文提出一种新的基于隐式反馈信息的社会...
随着在线商品交易额逐年增大和社交网络不断深入发展,推荐系统已成为解决信息过载的重要工具之一。当评分矩阵数据稀疏性较大时推荐精度就会显著下降,特别是用户冷启动时该问题更加明显。因此,本文提出一种新的基于隐式反馈信息的社会化排序推荐算法。该算法首先利用矩阵分解方法计算不同项目间的用户偏好。其次,将用户偏好信息融入贝叶斯个性化排名(Bayesian personalized ranking,BPR)算法。然后,挖掘用户之间的相似关系以及信任用户的直接和间接关系,并量化用户之间的信任关系,从而研究不同项目之间用户的偏好差异。最后,将以上信任关系和BPR算法进行融合,进而构建出社会化排序推荐模型。为了验证所提出的社会化排序推荐算法,在DouBan数据集和FilmTrust数据集上,进行算法的有效性验证。通过Precision、MAP和NGCD这3种排序评估指标分别在全数据集和用户冷启动中验证本文算法与SBPR、TBPR、BPR和MostPopular等算法之间排序推荐的优劣性。实验结果表明本文算法明显优于其他对比的排序推荐算法,并可以获得更好的推荐准确率。可见本文算法可以有效改善由于数据稀疏性和用户冷启动所引起的推荐效果差的问题。
展开更多
关键词
推荐
系统
排序
推荐
算法
贝叶斯个性化排名算法
相似关系
信任关系
在线阅读
下载PDF
职称材料
题名
基于多属性在线评价信息的商品购买推荐排序方法
被引量:
8
1
作者
张瑾
尤天慧
樊治平
机构
东北大学工商管理学院
出处
《东北大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2019年第1期138-143,共6页
基金
国家自然科学基金资助项目(71571039)
文摘
针对支持消费者购买决策,提出了一种基于多属性在线评价信息的商品购买推荐排序方法.在该方法中,首先将消费者关注的备选商品各属性在线评价信息转化为关于属性评价标度的概率分布,并确定备选商品各属性在线评价结果的累积分布函数,进而构建加权累积分布函数决策矩阵;然后,依据该决策矩阵,确定正、负理想商品加权累积分布向量,并计算各备选商品与正、负理想商品的加权累积分布向量的距离以及相应的贴近度;进一步地,依据贴近度的大小,可确定备选商品的推荐排序结果.最后,以一个支持消费者购买轿车决策为例说明了该方法的可行性和有效性.
关键词
商品购买决策
在线评价信息
概率分布
TOPSIS
推荐排序
Keywords
product purchasing decision
online ratings information
probabilistic distribution
TOPSIS(technique for order preference by similarity to an ideal solution)
recommendation ranking
分类号
C934 [经济管理—管理学]
在线阅读
下载PDF
职称材料
题名
基于社会信任正则化的排名推荐算法
被引量:
1
2
作者
张俐
机构
江苏理工学院计算机工程学院
北京邮电大学
出处
《工程科学与技术》
EI
CAS
CSCD
北大核心
2020年第5期201-208,共8页
基金
国家重点研发计划项目(2017YFC1307705)
江苏理工学院博士科研启动基金项目(KYY19042)。
文摘
随着在线商品交易额逐年增大和社交网络不断深入发展,推荐系统已成为解决信息过载的重要工具之一。当评分矩阵数据稀疏性较大时推荐精度就会显著下降,特别是用户冷启动时该问题更加明显。因此,本文提出一种新的基于隐式反馈信息的社会化排序推荐算法。该算法首先利用矩阵分解方法计算不同项目间的用户偏好。其次,将用户偏好信息融入贝叶斯个性化排名(Bayesian personalized ranking,BPR)算法。然后,挖掘用户之间的相似关系以及信任用户的直接和间接关系,并量化用户之间的信任关系,从而研究不同项目之间用户的偏好差异。最后,将以上信任关系和BPR算法进行融合,进而构建出社会化排序推荐模型。为了验证所提出的社会化排序推荐算法,在DouBan数据集和FilmTrust数据集上,进行算法的有效性验证。通过Precision、MAP和NGCD这3种排序评估指标分别在全数据集和用户冷启动中验证本文算法与SBPR、TBPR、BPR和MostPopular等算法之间排序推荐的优劣性。实验结果表明本文算法明显优于其他对比的排序推荐算法,并可以获得更好的推荐准确率。可见本文算法可以有效改善由于数据稀疏性和用户冷启动所引起的推荐效果差的问题。
关键词
推荐
系统
排序
推荐
算法
贝叶斯个性化排名算法
相似关系
信任关系
Keywords
recommendation system
ranking recommendation algorithm
BPR algorithm
similar relationship
trust relationship
分类号
TP181 [自动化与计算机技术—控制理论与控制工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于多属性在线评价信息的商品购买推荐排序方法
张瑾
尤天慧
樊治平
《东北大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2019
8
在线阅读
下载PDF
职称材料
2
基于社会信任正则化的排名推荐算法
张俐
《工程科学与技术》
EI
CAS
CSCD
北大核心
2020
1
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部