期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于标签与深度本体的Web推荐方法研究 被引量:2
1
作者 吕刚 郑诚 胡春玲 《计算机工程》 CAS CSCD 北大核心 2015年第12期156-160,共5页
基于用户偏好物品与其在网上浏览的历史记录,推荐系统都能够向用户推荐项目和预测未来的采购意愿,但稀疏性、冷启动等问题影响该方法的推荐效果。为此,提出将深度本体与用户标签结合的Web推荐方法。利用深度本体项目之间的语义关系对数... 基于用户偏好物品与其在网上浏览的历史记录,推荐系统都能够向用户推荐项目和预测未来的采购意愿,但稀疏性、冷启动等问题影响该方法的推荐效果。为此,提出将深度本体与用户标签结合的Web推荐方法。利用深度本体项目之间的语义关系对数据矩阵降维,根据用户提供的标签信息,将点击流映射到本体中,结合深度本体中项目之间的关系扩展推荐结果,推荐出top-n信息。实验结果表明,与传统的基于本体方法相比,该方法可解决稀疏性和冷启动等问题,同时推荐的准确性和时效性都有较好的效果。 展开更多
关键词 推荐系统 标签 深度本体 降维 点击流 推荐扩展
在线阅读 下载PDF
云计算环境中资源优化推荐技术研究 被引量:1
2
作者 吕晓晴 《现代电子技术》 北大核心 2016年第21期24-28,共5页
随着系统规模的不断扩大和数据获取量的指数级增长,在传统推荐系统的冷启动、精确性、扩展性等问题严峻化的同时,实时性问题亦成为面向海量数据推荐系统新的瓶颈点。基于传统推荐领域的主流算法,提出了一个扩展向量推荐模型。根据扩展... 随着系统规模的不断扩大和数据获取量的指数级增长,在传统推荐系统的冷启动、精确性、扩展性等问题严峻化的同时,实时性问题亦成为面向海量数据推荐系统新的瓶颈点。基于传统推荐领域的主流算法,提出了一个扩展向量推荐模型。根据扩展模型对推荐算法中对象的向量进行合理扩展,通过相似度计算等过程动态选取推荐集,完成对目标对象更精确的推荐。实验结果表明,与传统推荐算法相比,基于新模型的推荐算法可以显著地提升推荐效果,成功克服冷启动问题。 展开更多
关键词 扩展向量推荐模型 协同过滤 SLOPE One ALS—WR 分布式计算
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部