协同过滤是目前解决信息过载问题的主要方法之一,然而其推荐的多样性不足,且在冷启动场景下推荐效果较差.提出了基于用户偏好和动态兴趣的多样性推荐方法 DRMUD(A Diversified Recommendation Method Based on User Preference and Dyna...协同过滤是目前解决信息过载问题的主要方法之一,然而其推荐的多样性不足,且在冷启动场景下推荐效果较差.提出了基于用户偏好和动态兴趣的多样性推荐方法 DRMUD(A Diversified Recommendation Method Based on User Preference and Dynamic Interest).首先通过对用户历史反馈数据分析用户的多样性偏好,得出用户的多样倾向度;然后引入时间衰减函数,动态调整用户的历史评分数据;最后将矩阵分解和项目疲劳函数相结合,并加入多样倾向度调节两者所占比重.当新用户加入系统时,通过网格索引为其产生最信任邻居,新用户缺失的反馈信息由最信任邻居代替.实验结果表明,DRMUD算法有效缓解了用户冷启动问题,并能在保证准确率的前提下提高推荐结果的多样性.展开更多
软件开发者在开发过程遇到应用程序编程接口(application programming interface,API)使用问题时,通常希望能够得到有效的API使用模式建议,从而帮助其学习和使用.传统的API推荐方法会挖掘和学习代码库中API的使用知识,然后给开发者推荐...软件开发者在开发过程遇到应用程序编程接口(application programming interface,API)使用问题时,通常希望能够得到有效的API使用模式建议,从而帮助其学习和使用.传统的API推荐方法会挖掘和学习代码库中API的使用知识,然后给开发者推荐与上下文相关的API.然而由于上下文信息表征不够充分,以及推荐列表中冗余项和同质化内容的出现影响了推荐性能.针对这一问题,构建项目和方法与API的API层次调用图(API hierarchy call graph,AHCG)模型以更好地表达API上下文关系,充分利用API结构信息和语义信息来减少冗余项和降低同质化内容被推荐的可能性,进而提出基于上下文感知并面向多样性的API推荐(context-aware based API recommendation with diversity,CAPIRD)方法.该方法中引入相关性度量和关联性度量,最大限度地保留相关结果,同时平衡已选API与候选API的关联性,以尽可能挖掘到合理的初选API列表.最后结合最大边缘相关算法,在标准模式数据集上学习相关性和关联性的最佳权重组合,并进行多样性重排推荐.在2210个项目构成的3类数据集上进行实验并验证推荐性能,实验结果表明,CAPIRD在基于上下文的API推荐场景下能够有效提高推荐性能.在所有数据集的API推荐中,平均精度(mean average precision,MAP)指标平均提升值约9%,在Top-1的推荐中,成功率(success rate)指标平均提升约13%.展开更多
为了解决推荐列表偏向于热门项目,多样性差的问题,提出了ARIFDP算法(aggregation recommendation algorithm for embedding item fatigue and diversity preference)。首先通过对用户历史反馈数据分析用户的多样性偏好,得出用户的多样...为了解决推荐列表偏向于热门项目,多样性差的问题,提出了ARIFDP算法(aggregation recommendation algorithm for embedding item fatigue and diversity preference)。首先通过对用户历史反馈数据分析用户的多样性偏好,得出用户的多样倾向度,进而构造了与评价次数负相关的项目疲劳函数,最终将矩阵分解与项目疲劳函数相聚合,并加入多样倾向度调节项目疲劳函数所占权重,增加了冷门项目被推荐的概率。实验结果表明,ARIFDP算法能在保证准确率的前提下有效提高推荐结果的多样性。展开更多
文摘协同过滤是目前解决信息过载问题的主要方法之一,然而其推荐的多样性不足,且在冷启动场景下推荐效果较差.提出了基于用户偏好和动态兴趣的多样性推荐方法 DRMUD(A Diversified Recommendation Method Based on User Preference and Dynamic Interest).首先通过对用户历史反馈数据分析用户的多样性偏好,得出用户的多样倾向度;然后引入时间衰减函数,动态调整用户的历史评分数据;最后将矩阵分解和项目疲劳函数相结合,并加入多样倾向度调节两者所占比重.当新用户加入系统时,通过网格索引为其产生最信任邻居,新用户缺失的反馈信息由最信任邻居代替.实验结果表明,DRMUD算法有效缓解了用户冷启动问题,并能在保证准确率的前提下提高推荐结果的多样性.
文摘软件开发者在开发过程遇到应用程序编程接口(application programming interface,API)使用问题时,通常希望能够得到有效的API使用模式建议,从而帮助其学习和使用.传统的API推荐方法会挖掘和学习代码库中API的使用知识,然后给开发者推荐与上下文相关的API.然而由于上下文信息表征不够充分,以及推荐列表中冗余项和同质化内容的出现影响了推荐性能.针对这一问题,构建项目和方法与API的API层次调用图(API hierarchy call graph,AHCG)模型以更好地表达API上下文关系,充分利用API结构信息和语义信息来减少冗余项和降低同质化内容被推荐的可能性,进而提出基于上下文感知并面向多样性的API推荐(context-aware based API recommendation with diversity,CAPIRD)方法.该方法中引入相关性度量和关联性度量,最大限度地保留相关结果,同时平衡已选API与候选API的关联性,以尽可能挖掘到合理的初选API列表.最后结合最大边缘相关算法,在标准模式数据集上学习相关性和关联性的最佳权重组合,并进行多样性重排推荐.在2210个项目构成的3类数据集上进行实验并验证推荐性能,实验结果表明,CAPIRD在基于上下文的API推荐场景下能够有效提高推荐性能.在所有数据集的API推荐中,平均精度(mean average precision,MAP)指标平均提升值约9%,在Top-1的推荐中,成功率(success rate)指标平均提升约13%.
文摘为了解决推荐列表偏向于热门项目,多样性差的问题,提出了ARIFDP算法(aggregation recommendation algorithm for embedding item fatigue and diversity preference)。首先通过对用户历史反馈数据分析用户的多样性偏好,得出用户的多样倾向度,进而构造了与评价次数负相关的项目疲劳函数,最终将矩阵分解与项目疲劳函数相聚合,并加入多样倾向度调节项目疲劳函数所占权重,增加了冷门项目被推荐的概率。实验结果表明,ARIFDP算法能在保证准确率的前提下有效提高推荐结果的多样性。