在已有P2P模型的基础上提出了基于内容相似度和推荐反馈计算节点推荐值的对等网络信用模型IPBS(Integrated-partial based si milarity Trust)。该模型利用节点间的内容相似度来评价节点提供推荐服务的能力,根据每次交易的内容不同而改...在已有P2P模型的基础上提出了基于内容相似度和推荐反馈计算节点推荐值的对等网络信用模型IPBS(Integrated-partial based si milarity Trust)。该模型利用节点间的内容相似度来评价节点提供推荐服务的能力,根据每次交易的内容不同而改变节点间相似度值;同时依据节点交易历史时间和推荐反馈值自适应动态地调整节点的推荐值;实例表明,IPBS节点间推荐值,通过参考节点内容相似度、交易历史时间和推荐反馈3种机制,加强了模型的动态适应能力和搜索服务的效率。展开更多
社会网络包括以兴趣为核心的兴趣网络和以信任为核心的信任网络。如何利用社会网络中用户信任与兴趣相似的好友的项目数据来扩展用户本身的项目数据集,缓解用户数据稀疏性,利用目标用户的好友的项目评分数据为其产生推荐,是研究的重点...社会网络包括以兴趣为核心的兴趣网络和以信任为核心的信任网络。如何利用社会网络中用户信任与兴趣相似的好友的项目数据来扩展用户本身的项目数据集,缓解用户数据稀疏性,利用目标用户的好友的项目评分数据为其产生推荐,是研究的重点。和传统的推荐方法相比,提出一种改进模型SIMTM(Similar and Trust Model)来提供用户更加高效的推荐体验。该模型融合用户兴趣度和信任度作为初始亲密程度,根据融合后的好友网络进行推荐,同时根据推荐反馈,来不断地优化用户的项目评分数据集,使得亲密的用户好友更加亲密,过滤掉用户的普通好友,优化用户之间的兴趣和信任关联;并重新计算用户之间的亲密程度形成融合用户与其好友的融合网络,直至前后两次根据亲密程度得到的推荐结果相近,根据得到的最优的亲密程度构建融合网络来进行推荐。实验结果表明,该模型在数据稀疏的情况下,能有效提高用户推荐的准确率和覆盖率。展开更多
文摘在已有P2P模型的基础上提出了基于内容相似度和推荐反馈计算节点推荐值的对等网络信用模型IPBS(Integrated-partial based si milarity Trust)。该模型利用节点间的内容相似度来评价节点提供推荐服务的能力,根据每次交易的内容不同而改变节点间相似度值;同时依据节点交易历史时间和推荐反馈值自适应动态地调整节点的推荐值;实例表明,IPBS节点间推荐值,通过参考节点内容相似度、交易历史时间和推荐反馈3种机制,加强了模型的动态适应能力和搜索服务的效率。
文摘社会网络包括以兴趣为核心的兴趣网络和以信任为核心的信任网络。如何利用社会网络中用户信任与兴趣相似的好友的项目数据来扩展用户本身的项目数据集,缓解用户数据稀疏性,利用目标用户的好友的项目评分数据为其产生推荐,是研究的重点。和传统的推荐方法相比,提出一种改进模型SIMTM(Similar and Trust Model)来提供用户更加高效的推荐体验。该模型融合用户兴趣度和信任度作为初始亲密程度,根据融合后的好友网络进行推荐,同时根据推荐反馈,来不断地优化用户的项目评分数据集,使得亲密的用户好友更加亲密,过滤掉用户的普通好友,优化用户之间的兴趣和信任关联;并重新计算用户之间的亲密程度形成融合用户与其好友的融合网络,直至前后两次根据亲密程度得到的推荐结果相近,根据得到的最优的亲密程度构建融合网络来进行推荐。实验结果表明,该模型在数据稀疏的情况下,能有效提高用户推荐的准确率和覆盖率。