微推力器是实现卫星姿态与轨道控制不可或缺的执行机构,精确测量其推力性能至关重要.针对传统微推力测量装置存在的推力力臂难以精确测定,羽流随扭摆转动而偏转以及装配调试复杂等问题,设计并研制了一种基于罗伯威尔平衡结构的新型微推...微推力器是实现卫星姿态与轨道控制不可或缺的执行机构,精确测量其推力性能至关重要.针对传统微推力测量装置存在的推力力臂难以精确测定,羽流随扭摆转动而偏转以及装配调试复杂等问题,设计并研制了一种基于罗伯威尔平衡结构的新型微推力测量装置.该装置的推力力臂长度固定,不受微推力器安装位置的干扰,有效消除了力臂测量引入的不确定度,同时降低了微推力器的装配与调试难度.此外,该装置确保了推力羽流在扭摆转动过程中不发生偏转,便于同步监测推力器羽流信息.本研究利用电磁标准力对其开环和闭环两种测量模式开展了性能测试与评估,并使用该装置对一套冷气微推力器进行了标定.性能测试结果显示,在开环模式下,该装置量程为2 m N,分辨力优于1μN,包含因子为3时的测量不确定度为2.33μN+0.99%T(其中T为实测力值).在闭环模式下,测量量程达到100 mN,分辨力优于5μN,测量不确定度则为18.00μN+0.31%T.该装置可满足多种微牛级至毫牛级微推力器的推力测量需求,为我国商业航天的快速发展提供助力.展开更多
文摘微推力器是实现卫星姿态与轨道控制不可或缺的执行机构,精确测量其推力性能至关重要.针对传统微推力测量装置存在的推力力臂难以精确测定,羽流随扭摆转动而偏转以及装配调试复杂等问题,设计并研制了一种基于罗伯威尔平衡结构的新型微推力测量装置.该装置的推力力臂长度固定,不受微推力器安装位置的干扰,有效消除了力臂测量引入的不确定度,同时降低了微推力器的装配与调试难度.此外,该装置确保了推力羽流在扭摆转动过程中不发生偏转,便于同步监测推力器羽流信息.本研究利用电磁标准力对其开环和闭环两种测量模式开展了性能测试与评估,并使用该装置对一套冷气微推力器进行了标定.性能测试结果显示,在开环模式下,该装置量程为2 m N,分辨力优于1μN,包含因子为3时的测量不确定度为2.33μN+0.99%T(其中T为实测力值).在闭环模式下,测量量程达到100 mN,分辨力优于5μN,测量不确定度则为18.00μN+0.31%T.该装置可满足多种微牛级至毫牛级微推力器的推力测量需求,为我国商业航天的快速发展提供助力.