Fuzzy control based on Lyapunov function was employed to control the posture and the energy of an (acrobot) to make the transition from upswing control to balance control smoothly and stably. First, a control law base...Fuzzy control based on Lyapunov function was employed to control the posture and the energy of an (acrobot) to make the transition from upswing control to balance control smoothly and stably. First, a control law based on Lyapunov function was used to control the angle and the angular velocity of the second link towards zero when the energy of the acrobot reaches the potential energy at the unstable straight-up equilibrium position in the upswing process. The controller based on Lyapunov function makes the second link straighten nature relatively to the first link. At the same time, a fuzzy controller was designed to regulate the parameters of the upper control law to keep the change of the energy of the acrobot to a minimum, so that the switching from (upswing) to balance can be properly carried out and the acrobot can enter the balance quickly. The results of simulation show that the switching from upswing to balance can be completed smoothly, and the control effect of the acrobot is improved greatly.展开更多
Adaptive Type-2 fuzzy control possesses control performance better than the traditional adaptive fuzzy control.However,heavy computation burden obviously blocks the utilization of adaptive Type-2 fuzzy control in indu...Adaptive Type-2 fuzzy control possesses control performance better than the traditional adaptive fuzzy control.However,heavy computation burden obviously blocks the utilization of adaptive Type-2 fuzzy control in industrial application.By adopting novel piecewise fuzzy sets and center-average type-reduction,a simplified adaptive interval Type-2 fuzzy controller involving less computation is developed for practical industrial application.In the proposed controller,the inputs are divided into several subintervals and then two piecewise fuzzy sets are used for each subinterval.With the manner of piecewise fuzzy sets and a novel fuzzy rules inference engine,only part of fuzzy rules are simultaneously activated in one control loop,which exponentially decreases the computation and makes the controller appropriate in industrial application.The simulation and experimental study,involving the popular magnetic levitation platform,shows the predicted system with theoretical stability and good tracking performance.The analysis indicates that there is far less computation of the proposed controller than the traditional adaptive interval Type-2 fuzzy controller,especially when the number of fuzzy rules and fuzzy sets is large,and the controller still maintains good control performance as the traditional one.展开更多
A fast generation method of fuzzy rules for flux optimization decision-making was proposed in order to extract the linguistic knowledge from numerical data in the process of matter converting. The fuzzy if-then rules ...A fast generation method of fuzzy rules for flux optimization decision-making was proposed in order to extract the linguistic knowledge from numerical data in the process of matter converting. The fuzzy if-then rules with consequent real number were extracted from numerical data, and a linguistic representation method for deriving linguistic rules from fuzzy if-then rules with consequent real numbers was developed. The linguistic representation consisted of The simulat two linguistic variables with the degree of certainty and the storage structure of rule base was described. on results show that the method involves neither the time-consuming iterative learning procedure nor the complicated rule generation mechanisms, and can approximate complex system. The method was applied to determine the flux amount of copper converting furnace in the process of matter converting. The real result shows that the mass fraction of Cu in slag is reduced by 0.5 %.展开更多
In order to balance the temporal-spatial distribution of urban traffic flow, a model is established for combined urban traffic signal control and traffic flow guidance. With consideration of the wide use of fixed sign...In order to balance the temporal-spatial distribution of urban traffic flow, a model is established for combined urban traffic signal control and traffic flow guidance. With consideration of the wide use of fixed signal control at intersections, traffic assignment under traffic flow guidance, and dynamic characteristics of urban traffic management, a tri-level programming model is presented. To reflect the impact of intersection delay on traffic assignment, the lower level model is set as a modified user equilibrium model. The middle level model, which contains several definitional constraints for different phase modes, is built for the traffic signal control optimization. To solve the problem of tide lane management, the upper level model is built up based on nonlinear 0-1 integer programming. A heuristic iterative optimization algorithm(HIOA) is set up to solve the tri-level programming model. The lower level model is solved by method of successive averages(MSA), the middle level model is solved by non-dominated sorting genetic algorithm II(NSGA II), and the upper level model is solved by genetic algorithm(GA). A case study is raised to show the efficiency and applicability of the proposed modelling and computing method.展开更多
文摘Fuzzy control based on Lyapunov function was employed to control the posture and the energy of an (acrobot) to make the transition from upswing control to balance control smoothly and stably. First, a control law based on Lyapunov function was used to control the angle and the angular velocity of the second link towards zero when the energy of the acrobot reaches the potential energy at the unstable straight-up equilibrium position in the upswing process. The controller based on Lyapunov function makes the second link straighten nature relatively to the first link. At the same time, a fuzzy controller was designed to regulate the parameters of the upper control law to keep the change of the energy of the acrobot to a minimum, so that the switching from (upswing) to balance can be properly carried out and the acrobot can enter the balance quickly. The results of simulation show that the switching from upswing to balance can be completed smoothly, and the control effect of the acrobot is improved greatly.
基金Project(51005253) supported by the National Natural Science Foundation of ChinaProject(2012ZX02702006-003) supported by the National Science and Technology Major Program of ChinaProject(JMTZ201101) supported by the Key Laboratory for Precision & Non-traditional Machining of Ministry of Education,Dalian University of Technology,China
文摘Adaptive Type-2 fuzzy control possesses control performance better than the traditional adaptive fuzzy control.However,heavy computation burden obviously blocks the utilization of adaptive Type-2 fuzzy control in industrial application.By adopting novel piecewise fuzzy sets and center-average type-reduction,a simplified adaptive interval Type-2 fuzzy controller involving less computation is developed for practical industrial application.In the proposed controller,the inputs are divided into several subintervals and then two piecewise fuzzy sets are used for each subinterval.With the manner of piecewise fuzzy sets and a novel fuzzy rules inference engine,only part of fuzzy rules are simultaneously activated in one control loop,which exponentially decreases the computation and makes the controller appropriate in industrial application.The simulation and experimental study,involving the popular magnetic levitation platform,shows the predicted system with theoretical stability and good tracking performance.The analysis indicates that there is far less computation of the proposed controller than the traditional adaptive interval Type-2 fuzzy controller,especially when the number of fuzzy rules and fuzzy sets is large,and the controller still maintains good control performance as the traditional one.
基金Project(50374079) supported bythe National Natural Science Foundation of China project(2002cB312200) supported bythe State Key Fundamental Research and Development Programof China
文摘A fast generation method of fuzzy rules for flux optimization decision-making was proposed in order to extract the linguistic knowledge from numerical data in the process of matter converting. The fuzzy if-then rules with consequent real number were extracted from numerical data, and a linguistic representation method for deriving linguistic rules from fuzzy if-then rules with consequent real numbers was developed. The linguistic representation consisted of The simulat two linguistic variables with the degree of certainty and the storage structure of rule base was described. on results show that the method involves neither the time-consuming iterative learning procedure nor the complicated rule generation mechanisms, and can approximate complex system. The method was applied to determine the flux amount of copper converting furnace in the process of matter converting. The real result shows that the mass fraction of Cu in slag is reduced by 0.5 %.
基金Project(2014BAG01B0403)supported by the High-Tech Research and Development Program of China
文摘In order to balance the temporal-spatial distribution of urban traffic flow, a model is established for combined urban traffic signal control and traffic flow guidance. With consideration of the wide use of fixed signal control at intersections, traffic assignment under traffic flow guidance, and dynamic characteristics of urban traffic management, a tri-level programming model is presented. To reflect the impact of intersection delay on traffic assignment, the lower level model is set as a modified user equilibrium model. The middle level model, which contains several definitional constraints for different phase modes, is built for the traffic signal control optimization. To solve the problem of tide lane management, the upper level model is built up based on nonlinear 0-1 integer programming. A heuristic iterative optimization algorithm(HIOA) is set up to solve the tri-level programming model. The lower level model is solved by method of successive averages(MSA), the middle level model is solved by non-dominated sorting genetic algorithm II(NSGA II), and the upper level model is solved by genetic algorithm(GA). A case study is raised to show the efficiency and applicability of the proposed modelling and computing method.