提出了一种基于晶闸管控制的串连电容器(thyristor controlled series capacitor,TCSC)技术和粒子群优化算法的电力系统阻塞疏导方法。首先根据线路灵敏度分析确定安装TCSC的线路;然后提出了电力市场环境下电网中含有TCSC装置的阻塞疏...提出了一种基于晶闸管控制的串连电容器(thyristor controlled series capacitor,TCSC)技术和粒子群优化算法的电力系统阻塞疏导方法。首先根据线路灵敏度分析确定安装TCSC的线路;然后提出了电力市场环境下电网中含有TCSC装置的阻塞疏导计算数学模型;最后运用粒子群优化算法对这一数学模型进行参数优化,达到疏导电网阻塞的目的。IEEE14节点系统算例表明,基于TCSC技术进行电网阻塞疏导是有效、合理的。展开更多
An observer-based fault diagnosis method and a fault tolerant control for open-switch fault and current sensor fault are proposed for interleaved flyback converters of a micro-inverter system. First, based on the topo...An observer-based fault diagnosis method and a fault tolerant control for open-switch fault and current sensor fault are proposed for interleaved flyback converters of a micro-inverter system. First, based on the topology of a grid-connected micro-inverter, a mathematical model of the flyback converters is established. Second, a state observer is applied to estimate the currents online and generate corresponding residuals. The fault is diagnosed by comparing the residuals with the thresholds. Finally, a fault-tolerant control that consists of a fault-tolerant topology for the faulty switch and a simple software redundancy control for the faulty current sensor, is proposed to achieve a fault-tolerant operation. The feasibility and effectiveness of the proposed method has been verified by simulation and experimental results.展开更多
文摘提出了一种基于晶闸管控制的串连电容器(thyristor controlled series capacitor,TCSC)技术和粒子群优化算法的电力系统阻塞疏导方法。首先根据线路灵敏度分析确定安装TCSC的线路;然后提出了电力市场环境下电网中含有TCSC装置的阻塞疏导计算数学模型;最后运用粒子群优化算法对这一数学模型进行参数优化,达到疏导电网阻塞的目的。IEEE14节点系统算例表明,基于TCSC技术进行电网阻塞疏导是有效、合理的。
基金Project(2012AA051601)supported by the High-Tech Research and Development Program of China
文摘An observer-based fault diagnosis method and a fault tolerant control for open-switch fault and current sensor fault are proposed for interleaved flyback converters of a micro-inverter system. First, based on the topology of a grid-connected micro-inverter, a mathematical model of the flyback converters is established. Second, a state observer is applied to estimate the currents online and generate corresponding residuals. The fault is diagnosed by comparing the residuals with the thresholds. Finally, a fault-tolerant control that consists of a fault-tolerant topology for the faulty switch and a simple software redundancy control for the faulty current sensor, is proposed to achieve a fault-tolerant operation. The feasibility and effectiveness of the proposed method has been verified by simulation and experimental results.