串件拼修能够在同等条件下最大限度提高装备可用度,但在装备组成结构中,并不是所有的项目都能够进行串件。为此,针对不完全串件系统,在多级维修供应模式下,根据串件拼修特点,结合可修复备件多级库存控制理论(multi-echelon theory for r...串件拼修能够在同等条件下最大限度提高装备可用度,但在装备组成结构中,并不是所有的项目都能够进行串件。为此,针对不完全串件系统,在多级维修供应模式下,根据串件拼修特点,结合可修复备件多级库存控制理论(multi-echelon theory for recoverable item control,METRIC)理论,建立了系统可用度评估模型,并研究了串件对策下最优备件方案确定流程。通过实验设计,对不同串件对策下装备的可用度进行评估,计算表明串件拼修能够进一步提高装备可用度。利用多级多层次备件库存优化工具(vary METRIC,VMETRIC)平台对模型进行验证,结果表明,本文模型结果与VMETRIC仿真结果非常吻合,证明了本文模型的正确性。展开更多
Fuzzy control based on Lyapunov function was employed to control the posture and the energy of an (acrobot) to make the transition from upswing control to balance control smoothly and stably. First, a control law base...Fuzzy control based on Lyapunov function was employed to control the posture and the energy of an (acrobot) to make the transition from upswing control to balance control smoothly and stably. First, a control law based on Lyapunov function was used to control the angle and the angular velocity of the second link towards zero when the energy of the acrobot reaches the potential energy at the unstable straight-up equilibrium position in the upswing process. The controller based on Lyapunov function makes the second link straighten nature relatively to the first link. At the same time, a fuzzy controller was designed to regulate the parameters of the upper control law to keep the change of the energy of the acrobot to a minimum, so that the switching from (upswing) to balance can be properly carried out and the acrobot can enter the balance quickly. The results of simulation show that the switching from upswing to balance can be completed smoothly, and the control effect of the acrobot is improved greatly.展开更多
Variable pump driving variable motor(VPDVM) is the future development trend of the hydraulic transmission of an unmanned ground vehicle(UGV).VPDVM is a dual-input single-output nonlinear system with coupling,which is ...Variable pump driving variable motor(VPDVM) is the future development trend of the hydraulic transmission of an unmanned ground vehicle(UGV).VPDVM is a dual-input single-output nonlinear system with coupling,which is difficult to control.High pressure automatic variables bang-bang(HABB) was proposed to achieve the desired motor speed.First,the VPDVM nonlinear mathematic model was introduced,then linearized by feedback linearization theory,and the zero-dynamic stability was proved.The HABB control algorithm was proposed for VPDVM,in which the variable motor was controlled by high pressure automatic variables(HA) and the variable pump was controlled by bang-bang.Finally,simulation of VPDVM controlled by HABB was developed.Simulation results demonstrate the HABB can implement the desired motor speed rapidly and has strong robustness against the variations of desired motor speed,load and pump speed.展开更多
文摘串件拼修能够在同等条件下最大限度提高装备可用度,但在装备组成结构中,并不是所有的项目都能够进行串件。为此,针对不完全串件系统,在多级维修供应模式下,根据串件拼修特点,结合可修复备件多级库存控制理论(multi-echelon theory for recoverable item control,METRIC)理论,建立了系统可用度评估模型,并研究了串件对策下最优备件方案确定流程。通过实验设计,对不同串件对策下装备的可用度进行评估,计算表明串件拼修能够进一步提高装备可用度。利用多级多层次备件库存优化工具(vary METRIC,VMETRIC)平台对模型进行验证,结果表明,本文模型结果与VMETRIC仿真结果非常吻合,证明了本文模型的正确性。
文摘Fuzzy control based on Lyapunov function was employed to control the posture and the energy of an (acrobot) to make the transition from upswing control to balance control smoothly and stably. First, a control law based on Lyapunov function was used to control the angle and the angular velocity of the second link towards zero when the energy of the acrobot reaches the potential energy at the unstable straight-up equilibrium position in the upswing process. The controller based on Lyapunov function makes the second link straighten nature relatively to the first link. At the same time, a fuzzy controller was designed to regulate the parameters of the upper control law to keep the change of the energy of the acrobot to a minimum, so that the switching from (upswing) to balance can be properly carried out and the acrobot can enter the balance quickly. The results of simulation show that the switching from upswing to balance can be completed smoothly, and the control effect of the acrobot is improved greatly.
基金Project(51375029)supported by the National Natural Science Foundation of ChinaProject(20091102120038)supported by Specialized Research Fund for Doctoral Program of Higher Education of China
文摘Variable pump driving variable motor(VPDVM) is the future development trend of the hydraulic transmission of an unmanned ground vehicle(UGV).VPDVM is a dual-input single-output nonlinear system with coupling,which is difficult to control.High pressure automatic variables bang-bang(HABB) was proposed to achieve the desired motor speed.First,the VPDVM nonlinear mathematic model was introduced,then linearized by feedback linearization theory,and the zero-dynamic stability was proved.The HABB control algorithm was proposed for VPDVM,in which the variable motor was controlled by high pressure automatic variables(HA) and the variable pump was controlled by bang-bang.Finally,simulation of VPDVM controlled by HABB was developed.Simulation results demonstrate the HABB can implement the desired motor speed rapidly and has strong robustness against the variations of desired motor speed,load and pump speed.