应用倾斜转弯(Bank to Turn,BTT)及推力矢量控(ThrustVector Control,TVC)技术设计并建立了空空导弹六自由度模型。在此基础上考虑气动参数变化和建模不确定性引起的误差对导弹控制系统的影响,为消除误差影响,引入RBF神经网络分别对快...应用倾斜转弯(Bank to Turn,BTT)及推力矢量控(ThrustVector Control,TVC)技术设计并建立了空空导弹六自由度模型。在此基础上考虑气动参数变化和建模不确定性引起的误差对导弹控制系统的影响,为消除误差影响,引入RBF神经网络分别对快慢回路进行补偿,利用李亚普诺夫(Lyapunov)稳定性定理推导了神经网络权值、中心及带宽的自适应规律,并证明了闭环系统的稳定性。通过对某型空空导弹大机动仿真研究,结果表明RBF神经网络自适应控制方法补偿作用显著,不仅改善了控制系统的动态性能,而且使系统具有良好的抗干扰和容错能力。展开更多
Based on rational behavior model of three layers, a tracking control system is designed for straight line tracking which is commonly used in underwater survey missions. An intelligent PID control law implemented as pl...Based on rational behavior model of three layers, a tracking control system is designed for straight line tracking which is commonly used in underwater survey missions. An intelligent PID control law implemented as planning level during the control system using transverse deviation is came up with. Continuous tracking of path expressed by a point sequence can be realized by the law. Firstly, a path tracking control system based on rational behavior model of three layers is designed, mainly satisfying the needs of underactuated AUV. Since there is no need to perform spatially coupled maneuvers, the 3D path tracking control is decoupled into planar 2D path tracking and depth or height tracking separately. Secondly, planar path tracking controller is introduced. For the reason that more attention is paid to comparing with vertical position control, transverse deviation in analytical form is derived. According to the Lyapunov direct theory, control law is designed using discrete PID algorithm whose parameters obey adaptive fuzzy adjustment. Reference heading angle is given as an output of the guidance controller conducted by lateral deviation together with its derivative. For the purpose of improving control quality and facilitating parameter modifying, data normalize modules based on Sigmoid function are applied to input-output data manipulation. Lastly, a sequence of experiments was carried out successfully, including tests in Longfeng lake and at the Yellow sea. In most challenging sea conditions, tracking errors of straight line are below 2 m in general. The results show that AUV is able to compensate the disturbance brought by sea current. The provided test results demonstrate that the designed guidance controller guarantees stably and accurately straight route tracking. Besides, the proposed control system is accessible for continuous comb-shaped path tracking in region searching.展开更多
文摘应用倾斜转弯(Bank to Turn,BTT)及推力矢量控(ThrustVector Control,TVC)技术设计并建立了空空导弹六自由度模型。在此基础上考虑气动参数变化和建模不确定性引起的误差对导弹控制系统的影响,为消除误差影响,引入RBF神经网络分别对快慢回路进行补偿,利用李亚普诺夫(Lyapunov)稳定性定理推导了神经网络权值、中心及带宽的自适应规律,并证明了闭环系统的稳定性。通过对某型空空导弹大机动仿真研究,结果表明RBF神经网络自适应控制方法补偿作用显著,不仅改善了控制系统的动态性能,而且使系统具有良好的抗干扰和容错能力。
基金Projects(51179035,51279221) supported by the National Natural Science Foundation of ChinaProject(2014M561333) supported by Postdoctoral Science Foundation of China
文摘Based on rational behavior model of three layers, a tracking control system is designed for straight line tracking which is commonly used in underwater survey missions. An intelligent PID control law implemented as planning level during the control system using transverse deviation is came up with. Continuous tracking of path expressed by a point sequence can be realized by the law. Firstly, a path tracking control system based on rational behavior model of three layers is designed, mainly satisfying the needs of underactuated AUV. Since there is no need to perform spatially coupled maneuvers, the 3D path tracking control is decoupled into planar 2D path tracking and depth or height tracking separately. Secondly, planar path tracking controller is introduced. For the reason that more attention is paid to comparing with vertical position control, transverse deviation in analytical form is derived. According to the Lyapunov direct theory, control law is designed using discrete PID algorithm whose parameters obey adaptive fuzzy adjustment. Reference heading angle is given as an output of the guidance controller conducted by lateral deviation together with its derivative. For the purpose of improving control quality and facilitating parameter modifying, data normalize modules based on Sigmoid function are applied to input-output data manipulation. Lastly, a sequence of experiments was carried out successfully, including tests in Longfeng lake and at the Yellow sea. In most challenging sea conditions, tracking errors of straight line are below 2 m in general. The results show that AUV is able to compensate the disturbance brought by sea current. The provided test results demonstrate that the designed guidance controller guarantees stably and accurately straight route tracking. Besides, the proposed control system is accessible for continuous comb-shaped path tracking in region searching.