期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
欠平衡钻井安全钻进控制参数评价 被引量:6
1
作者 杨先伦 李黔 袁本福 《断块油气田》 CAS 2013年第5期671-673,共3页
欠平衡钻进过程中,气体侵入井筒后,环空出现多相流动状态。由于气体具有可压缩性,环空压力场随着气体的侵入及侵入量的改变而呈现复杂的变化,整个井筒压力剖面将出现波动。为使地层气体可控制地侵入井筒,需要及时调节控制回压和钻井液排... 欠平衡钻进过程中,气体侵入井筒后,环空出现多相流动状态。由于气体具有可压缩性,环空压力场随着气体的侵入及侵入量的改变而呈现复杂的变化,整个井筒压力剖面将出现波动。为使地层气体可控制地侵入井筒,需要及时调节控制回压和钻井液排量,保证井底压力在安全密度窗口内,维持合理的井底欠平衡状态,以实现安全钻进。文中根据欠平衡钻进井筒压力平衡关系,建立了井底压力控制模型。通过分析影响井底压力的参数,建立了影响井底压力控制的安全钻进控制参数模型,并以控制回压为例给出了具体的求解流程。以新疆某井为例,说明控制参数对井底压力和环空压力场的影响。研究结果表明:地层出气后,能够通过增加控制回压,采用正常循环排出的方式,将侵入气体排出井筒,实现安全钻进;增加钻井液排量,气液混合速度增大,环空摩阻增大,导致井底压力增加。 展开更多
关键词 欠平衡钻井 安全钻进 控制回压 钻井液排量 井底压力 环空压力场 控制参数模型
在线阅读 下载PDF
Unmanned wave glider heading model identification and control by artificial fish swarm algorithm 被引量:2
2
作者 WANG Lei-feng LIAO Yu-lei +2 位作者 LI Ye ZHANG Wei-xin PAN Kai-wen 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第9期2131-2142,共12页
We introduce the artificial fish swarm algorithm for heading motion model identification and control parameter optimization problems for the“Ocean Rambler”unmanned wave glider(UWG).First,under certain assumptions,th... We introduce the artificial fish swarm algorithm for heading motion model identification and control parameter optimization problems for the“Ocean Rambler”unmanned wave glider(UWG).First,under certain assumptions,the rigid-flexible multi-body system of the UWG was simplified as a rigid system composed of“thruster+float body”,based on which a planar motion model of the UWG was established.Second,we obtained the model parameters using an empirical method combined with parameter identification,which means that some parameters were estimated by the empirical method.In view of the specificity and importance of the heading control,heading model parameters were identified through the artificial fish swarm algorithm based on tank test data,so that we could take full advantage of the limited trial data to factually describe the dynamic characteristics of the system.Based on the established heading motion model,parameters of the heading S-surface controller were optimized using the artificial fish swarm algorithm.Heading motion comparison and maritime control experiments of the“Ocean Rambler”UWG were completed.Tank test results show high precision of heading motion prediction including heading angle and yawing angular velocity.The UWG shows good control performance in tank tests and sea trials.The efficiency of the proposed method is verified. 展开更多
关键词 unmanned wave glider artificial fish swarm algorithm heading model parameters identification control parameters optimization
在线阅读 下载PDF
Optimal control of cobalt crust seabedmining parameters based on simulated annealing genetic algorithm 被引量:2
3
作者 夏毅敏 张刚强 +2 位作者 聂四军 卜英勇 张振华 《Journal of Central South University》 SCIE EI CAS 2011年第3期650-657,共8页
Under the condition of the designated collection ratio and the interfused ratio of mullock, to ensure the least energy consumption, the parameters of collecting head (the feed speed, the axes height of collecting hea... Under the condition of the designated collection ratio and the interfused ratio of mullock, to ensure the least energy consumption, the parameters of collecting head (the feed speed, the axes height of collecting head, and the rotate speed) are chosen as the optimized parameters. According to the force on the cutting pick, the collecting size of the cobalt crust and bedrock and the optimized energy consumption of the collecting head, the optimized design model of collecting head is built. Taking two hundred groups seabed microtopography for grand in the range of depth displacement from 4.5 to 5.5 era, then making use of the improved simulated annealing genetic algorithm (SAGA), the corresponding optimized result can be obtained. At the same time, in order to speed up the controlling of collecting head, the optimization results are analyzed using the regression analysis method, and the conclusion of the second parameter of the seabed microtopography is drawn. 展开更多
关键词 cobalt crust mining parameter specific energy consumption simulated annealing genetic algorithm
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部