针对接收信号强度指示(Received Signal Strength Indication,RSSI)时变现象影响WLAN室内定位精度问题进行了研究,提出了一种基于RSSI概率统计分布(Statistical Probability Distribution,SPD)的加权K最近邻(Weighted K-Nearest Neighbo...针对接收信号强度指示(Received Signal Strength Indication,RSSI)时变现象影响WLAN室内定位精度问题进行了研究,提出了一种基于RSSI概率统计分布(Statistical Probability Distribution,SPD)的加权K最近邻(Weighted K-Nearest Neighbor,WKNN)方法——SPD-WKNN方法。该方法首先利用SPD方法得到指纹点RSSI向量区间;然后运用SVM算法选取测试点K个近邻指纹点,计算测试点RSSI向量到每个近邻指纹点的最小欧氏距离;最后结合WKNN算法获取定位结果。实验结果表明,SPD-WKNN方法与NN、KNN、WKNN、SVR和LSSVM方法相比定位误差分别降低了47.3%、41.6%、31.9%、27.1%和16.3%,呈现了良好的定位效果;利用SVM算法的稀疏性明显减小了运算时间。展开更多
感知节点的定位是无线传感网应用的基础。现有的静态定位算法无法应用于动态传感网。针对一类目标节点移动而锚节点静止的传感网应用,提出了一种RRMCL(RSSI Rank Monte Carlo Localization)定位算法。该算法以蒙特卡罗算法为基础,利用RS...感知节点的定位是无线传感网应用的基础。现有的静态定位算法无法应用于动态传感网。针对一类目标节点移动而锚节点静止的传感网应用,提出了一种RRMCL(RSSI Rank Monte Carlo Localization)定位算法。该算法以蒙特卡罗算法为基础,利用RSSI(Received Signal Strength Indication)值与距离的单调递减关系划分通信域,减少采样区域大小。为了避免锚节点共线出现定位失效的情况,引入共线影响角度,提出了一种约束策略。仿真结果表明,提出的RRMCL与现有的MCL和MCB定位算法相比,能有效缩小采样区域,提高了定位精度和速度。展开更多
定位节点接收的信号强度指示(Received Signal Strength Indication,RSSI)值是室内指纹定位技术重要的元素之一。通过对定位节点接收到的信号强度值特性分析,提出了基于RSSI权值的室内定位算法。改进型RSSI权值计算公式以及权值指数α...定位节点接收的信号强度指示(Received Signal Strength Indication,RSSI)值是室内指纹定位技术重要的元素之一。通过对定位节点接收到的信号强度值特性分析,提出了基于RSSI权值的室内定位算法。改进型RSSI权值计算公式以及权值指数α的提出,使得定位算法具有一定的环境适应性,能更灵活地运用于实际定位场景。经过一般实验场景验证,算法在定位精度上有较大的提升。展开更多
文摘针对接收信号强度指示(Received Signal Strength Indication,RSSI)时变现象影响WLAN室内定位精度问题进行了研究,提出了一种基于RSSI概率统计分布(Statistical Probability Distribution,SPD)的加权K最近邻(Weighted K-Nearest Neighbor,WKNN)方法——SPD-WKNN方法。该方法首先利用SPD方法得到指纹点RSSI向量区间;然后运用SVM算法选取测试点K个近邻指纹点,计算测试点RSSI向量到每个近邻指纹点的最小欧氏距离;最后结合WKNN算法获取定位结果。实验结果表明,SPD-WKNN方法与NN、KNN、WKNN、SVR和LSSVM方法相比定位误差分别降低了47.3%、41.6%、31.9%、27.1%和16.3%,呈现了良好的定位效果;利用SVM算法的稀疏性明显减小了运算时间。
文摘感知节点的定位是无线传感网应用的基础。现有的静态定位算法无法应用于动态传感网。针对一类目标节点移动而锚节点静止的传感网应用,提出了一种RRMCL(RSSI Rank Monte Carlo Localization)定位算法。该算法以蒙特卡罗算法为基础,利用RSSI(Received Signal Strength Indication)值与距离的单调递减关系划分通信域,减少采样区域大小。为了避免锚节点共线出现定位失效的情况,引入共线影响角度,提出了一种约束策略。仿真结果表明,提出的RRMCL与现有的MCL和MCB定位算法相比,能有效缩小采样区域,提高了定位精度和速度。
文摘定位节点接收的信号强度指示(Received Signal Strength Indication,RSSI)值是室内指纹定位技术重要的元素之一。通过对定位节点接收到的信号强度值特性分析,提出了基于RSSI权值的室内定位算法。改进型RSSI权值计算公式以及权值指数α的提出,使得定位算法具有一定的环境适应性,能更灵活地运用于实际定位场景。经过一般实验场景验证,算法在定位精度上有较大的提升。