期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于梯度分布调节策略的Xgboost算法优化 被引量:9
1
作者 李浩 朱焱 《计算机应用》 CSCD 北大核心 2020年第6期1633-1637,共5页
为了解决集成学习模型Xgboost在二分类问题中少数类检出率低的问题,提出了基于梯度分布调节策略的改进的Xgboost算法--LCGHA-Xgboost。首先,通过定义损失贡献(LC)来模拟Xgboost算法中样本个体的损失量;而后,通过定义损失贡献密度(LCD)... 为了解决集成学习模型Xgboost在二分类问题中少数类检出率低的问题,提出了基于梯度分布调节策略的改进的Xgboost算法--LCGHA-Xgboost。首先,通过定义损失贡献(LC)来模拟Xgboost算法中样本个体的损失量;而后,通过定义损失贡献密度(LCD)来衡量Xgboost算法中样本被正确分类的难易程度;最后,提出了梯度分布调节算法LCGHA,依据LCD动态调整样本个体的一阶梯度分布,间接地增大难分样本(主要存在于少数类中)的损失量,减小易分样本(主要存在于多数类中)的损失量,使Xgboost算法偏向对难分样本的学习。实验结果表明,与Xgboost、GBDT、随机森林(Random_Forest)这三大集成学习算法相比,LCGHA-Xgboost算法在多个UCI数据集上的召回率(Recall)值有5.4%~16.7%的提高,AUC值有0.94%~7.41%的提高;在垃圾网页数据集WebSpam-UK2007和DC2010数据集上所提算法的Recall值更是有44.4%~383.3%的提高,AUC值有5.8%~35.6%的提高。LCGHA-Xgboost算法可以有效提高对少数类的分类检出能力,减小少数类的分类错误率。 展开更多
关键词 不平衡分类 Xgboost 梯度分布 损失贡献 损失贡献密度
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部