期刊文献+
共找到24篇文章
< 1 2 >
每页显示 20 50 100
基于多示例深度学习与损失函数优化的交通标志识别算法 被引量:2
1
作者 张永雄 王亮明 李东 《现代电子技术》 北大核心 2018年第15期133-136,140,共5页
为了解决当前交通标志种类繁多和所处环境多变,导致智能识别正确率不高的问题,提出基于多示例深度学习的交通标志识别算法。根据样本图像块与其对应的标签设计一个包含颜色、几何、区域特征的训练集,得到样本特征与标签的对应规律;根据... 为了解决当前交通标志种类繁多和所处环境多变,导致智能识别正确率不高的问题,提出基于多示例深度学习的交通标志识别算法。根据样本图像块与其对应的标签设计一个包含颜色、几何、区域特征的训练集,得到样本特征与标签的对应规律;根据权重修正反馈,推导包与标签的逻辑关系,建立多示例训练学习算子,准确分类交通标志。进行训练集损失函数计算,通过最优分类器响应减少训练数据损失。最后,基于大数据样本驱动形成背景约束,从而去除示例中模棱两可的训练数据,完成交通标志的准确识别。基于QT平台,开发相应的识别软件。实验测试结果显示,与当前交通标志识别技术相比,所提算法拥有更高的识别正确性与鲁棒性,且对各类交通标志具有较高的识别准确率,在智能汽车、自动交通监控等领域具有一定的应用价值。 展开更多
关键词 交通标志识别 损失函数优化 训练集 多示例 深度学习 背景约束
在线阅读 下载PDF
融合兴趣点和联合损失函数的长时航迹预测模型
2
作者 周传鑫 简刚 +7 位作者 李凌书 杨壹 胡宇 刘正铭 张伟 饶真珍 李云霄 吴超 《电子与信息学报》 北大核心 2025年第8期2841-2849,共9页
航迹预测在飞机舰船交通管理、路径规划和安全监测等领域具有重要意义。针对现有Transformer模型在航迹预测任务中存在的训练收敛速度慢、模型过拟合、长时误差大等问题,该文提出一种融合兴趣点和联合损失函数的长时航迹预测模型(PL-Tra... 航迹预测在飞机舰船交通管理、路径规划和安全监测等领域具有重要意义。针对现有Transformer模型在航迹预测任务中存在的训练收敛速度慢、模型过拟合、长时误差大等问题,该文提出一种融合兴趣点和联合损失函数的长时航迹预测模型(PL-Transformer)。首先,通过专家经验定义预测范围内兴趣点的位置,引入航迹范围内待预测轨迹点与兴趣点间的关联特征,联合已有特征并转化为数据特征的稀疏表示,增强模型对运动航迹的全局特征捕捉能力,解决Transformer模型仅关注航迹自身局部特征变化的问题;其次,通过优化损失函数,将模型经纬度特征与兴趣点特征损失相关联,挖掘不同特征间的内涵损失,从而提高对航迹的长时预测精度。实验结果表明,PL-Transformer模型在较长时间尺度的航迹预测任务中,相较于基准长时模型预测误差平均降低了约10%,验证了该模型在航迹预测中的有效性与可靠性。 展开更多
关键词 航迹预测 TRANSFORMER 兴趣点 损失函数优化
在线阅读 下载PDF
无人系统传输与在线智能处理实时优化技术研究
3
作者 李忠涛 陈彦桥 +1 位作者 苏阳 杨建永 《无线电通信技术》 北大核心 2025年第2期362-366,共5页
无人机在各种领域应用广泛。然而,无人系统组织运用面临传输资源受限等突出问题,需针对任务环境、场景、阶段的不同保障需求,基于多源图像目标智能检测识别手段,自适应调整无人系统信息传输内容。提出了一种新型的多源图像目标检测识别... 无人机在各种领域应用广泛。然而,无人系统组织运用面临传输资源受限等突出问题,需针对任务环境、场景、阶段的不同保障需求,基于多源图像目标智能检测识别手段,自适应调整无人系统信息传输内容。提出了一种新型的多源图像目标检测识别方法,在YOLO经典架构上进行优化,包括空间金字塔架构、路径聚合网络(Path Aggregation Network,PAN)结构、标签平滑和损失函数,经实验验证,取得了良好的多源图像目标检测识别效果。 展开更多
关键词 无人机 目标检测识别 YOLO 空间金字塔 标签平滑 损失函数优化
在线阅读 下载PDF
基于特征增强与损失优化的水下遮挡目标检测算法 被引量:2
4
作者 陈亮 杨羽翼 +3 位作者 张剑 吴亮红 时慧晶 彭辉 《探测与控制学报》 CSCD 北大核心 2023年第3期109-115,共7页
针对水下探测机器人在海洋作业时由于目标密集、形态重叠等原因容易产生误检、漏检的问题,提出一种基于特征增强与损失优化的水下遮挡目标检测算法。算法以YOLOv4骨干网络为基础,首先在随机通道上引入邻域融合的残差结构模块,通过通道... 针对水下探测机器人在海洋作业时由于目标密集、形态重叠等原因容易产生误检、漏检的问题,提出一种基于特征增强与损失优化的水下遮挡目标检测算法。算法以YOLOv4骨干网络为基础,首先在随机通道上引入邻域融合的残差结构模块,通过通道注意力机制,提升通道的信息交互能力;其后,利用α-IoU优化CIoU-Loss损失函数,并采用真值排斥因子与预测排斥因子改进坐标回归损失函数,提高目标位置回归的精度;最后,针对水下图像数据干扰信息多的问题,采用基于密集度引导的自适应非极大值抑制方法完成对输出信息的处理,提升目标检测的召回率。通过对水下海洋生物的检测实验,算法在通用场景与密集遮挡场景下目标探测的mAP值分别提高了1.43%和4.4%,验证了算法的有效性。 展开更多
关键词 水下目标探测 YOLOv4 遮挡目标 通道注意力 损失函数优化
在线阅读 下载PDF
基于无人机影像和MDIEA-YOLO苗木识别模型的造林验收智能系统
5
作者 王武魁 廉瑞峰 +3 位作者 吴明晶 张大兴 石燕妮 谷亚宇 《北京林业大学学报》 北大核心 2025年第5期14-25,共12页
【目的】传统造林验收方法效率低且难以适应复杂场景,同时无人机影像难以直接用于AI模型输入,制约了造林智能化验收的实现。本研究针对造林验收场景提出一种基于无人机影像的MDIEA-YOLO检测模型,旨在实现对造林幼苗的高效识别与计数,提... 【目的】传统造林验收方法效率低且难以适应复杂场景,同时无人机影像难以直接用于AI模型输入,制约了造林智能化验收的实现。本研究针对造林验收场景提出一种基于无人机影像的MDIEA-YOLO检测模型,旨在实现对造林幼苗的高效识别与计数,提高造林验收的精确度和效率,为林业管理现代化提供技术支持。【方法】为实现上述目标,本研究开发了“多维交互增强注意力模块”(MDIEA),该模块融合了卷积块注意力机制和Shuffle Attention机制,能够高效处理复杂场景和小目标特征,显著提升网络的解析能力。通过将MDIEA嵌入YOLOv8特征提取网络,细化的通道和空间注意力加权增强了关键特征的识别能力。此外,引入XIoU损失函数优化了模型对小型和重叠目标的边界定位能力,进一步提升检测精度。最终,构建了基于无人机影像和MDIEA-YOLO模型的端到端影像预处理流程,实现了造林幼苗的自动识别与计数。【结果】在福建将乐国有林场的实验中,MDIEA-YOLO模型在1年生、2年生、3年生数据集上分别获得了97.5%、96.1%、96.8%的mAP0.5值,明显优于其他对比模型。在不同光照和分辨率条件下,MDIEA-YOLO模型的m AP0.5值均保持在92%以上,显示出良好的鲁棒性。在处理100张影像时,MDIEA-YOLO模型的CPU与GPU处理效率相近,无明显差异,表明该系统在实际应用中具有较高的灵活性和适应性。与人工检验对比发现,该系统在关键指标上展现了与人工检验相当甚至更高的准确性和效率,证明了系统的可靠性和实用性。【结论】本研究提出的造林验收无人机影像预处理系统,有效推动了造林验收的智能化进程,显著提升了验收效率和精度,为造林验收领域提供了新的技术解决方案,具备广泛的应用前景。未来,将继续优化模型性能,扩大数据集规模,以适应更广泛的应用场景,推动林业管理的现代化进程。 展开更多
关键词 数字化造林验收 无人机(UAV) 图像识别 小目标检测 YOLOv8 注意力机制 损失函数优化
在线阅读 下载PDF
基于门控循环单元残差连接网络与多任务学习的园区综合能源系统多元负荷预测 被引量:2
6
作者 高晨元 田建艳 +1 位作者 姬政雄 杨立志 《电网技术》 北大核心 2025年第5期1771-1780,I0003-I0006,共14页
准确的多元负荷预测对于能源系统的安全稳定运行以及优化控制和调度至关重要。针对园区综合能源系统随机性强、不确定性大、多种能源耦合等特点,该文提出一种基于门控循环单元(gated recurrent unit,GRU)、残差连接网络与多任务学习(mul... 准确的多元负荷预测对于能源系统的安全稳定运行以及优化控制和调度至关重要。针对园区综合能源系统随机性强、不确定性大、多种能源耦合等特点,该文提出一种基于门控循环单元(gated recurrent unit,GRU)、残差连接网络与多任务学习(multi-task learning,MTL)结合的园区综合能源系统多元负荷预测模型。首先,构建综合相关性分析方法,以分析不同负荷之间、不同负荷与气象因素之间的关联性,进而优选多元负荷的影响因素;其次,通过GRU网络挖掘多元负荷数据的时序特征,特别地,通过残差连接(residual connection,RC)优化深度网络的性能;然后,采用多任务学习硬共享机制提取多元负荷间的耦合信息;最后,采用多任务损失函数优化平衡多任务训练,提升预测模型的整体性能。算例分析表明,该文所提基于损失函数优化的GRU-RC-MTL模型相较于其他模型具有更为优越的预测性能,验证了该文模型的有效性,可为园区综合能源系统优化调度与能源管控提供更精确的多元负荷预测信息。 展开更多
关键词 园区综合能源系统 多元负荷预测 门控循环单元 多任务学习 损失函数优化策略
在线阅读 下载PDF
一种优化孪生网络的小样本辐射源个体识别方法 被引量:5
7
作者 梁先明 《电讯技术》 北大核心 2022年第6期695-701,共7页
针对信号辐射源个体识别小样本难以稳定收敛、识别准确率不足的问题,提出了一种基于优化孪生网络模型进行小样本辐射源个体识别的方法,分析了通过孪生网络实现不同类别样本对特征向量距离增大、相同类别样本对特征向量距离减小的弹簧模... 针对信号辐射源个体识别小样本难以稳定收敛、识别准确率不足的问题,提出了一种基于优化孪生网络模型进行小样本辐射源个体识别的方法,分析了通过孪生网络实现不同类别样本对特征向量距离增大、相同类别样本对特征向量距离减小的弹簧模型,达到小样本训练损失函数的快速收敛的目的,并结合交叉熵实现损失函数优化,从而提升了小样本个体识别的准确率和稳定性。试验结果表明,针对每类不大于10个训练样本集的通信电台所提方法能够达到88%以上个体识别准确率。 展开更多
关键词 小样本 个体识别 孪生网络 损失函数优化 Resnet网络
在线阅读 下载PDF
非结构化环境下番茄采摘机器人目标识别与检测 被引量:9
8
作者 张永宏 李宇超 +3 位作者 董天天 秦夏洋 刘云平 曹景兴 《中国农机化学报》 北大核心 2024年第4期205-213,共9页
针对采摘机器人收获技术中的识别技术受限于非结构化环境中复杂背景干扰的问题,采用改进模型后处理的研究路线,提出一种改进YOLOv5算法。首先将果实目标的中心点距离、预测框宽高实际差值与面积交并比三者共同考虑为损失项,提升预测框... 针对采摘机器人收获技术中的识别技术受限于非结构化环境中复杂背景干扰的问题,采用改进模型后处理的研究路线,提出一种改进YOLOv5算法。首先将果实目标的中心点距离、预测框宽高实际差值与面积交并比三者共同考虑为损失项,提升预测框实际尺寸精度,再利用中心点距离作为惩罚项加权面积交并比得分,提升密集目标的识别能力,最后通过设置辅助训练头,提供更多的梯度信息以防止过拟合现象。通过多种损失函数损失值对比与模型改进精度对比试验证明改进有效性,部署至机器人验证可行性。结果表明,改进后的算法模型识别平均精度95.6%,召回率达到90.1%,相较于改进前全类精度提升0.4个百分点,召回率提升0.4个百分点,满足采摘机器人识别需求。 展开更多
关键词 非结构化 番茄果实 目标识别 损失函数优化 YOLOv5算法
在线阅读 下载PDF
基于改进Faster RCNN的微操作空间目标检测算法 被引量:3
9
作者 陈国良 庞裕双 《传感器与微系统》 CSCD 北大核心 2024年第3期144-147,151,共5页
将Faster RCNN引入微操作系统的目标检测之中。针对微操作空间下待检测目标存在尺度变化和在显微镜放大倍数较小时,待检测目标尺度过小、特征不明显的问题,提出了一种基于改进Faster RCNN的微操作空间目标检测算法。使用在图像分类任务... 将Faster RCNN引入微操作系统的目标检测之中。针对微操作空间下待检测目标存在尺度变化和在显微镜放大倍数较小时,待检测目标尺度过小、特征不明显的问题,提出了一种基于改进Faster RCNN的微操作空间目标检测算法。使用在图像分类任务中性能优越的深度残差网络提取图像的特征。引入递归特征金字塔网络,对特征进行融合。改进区域建议网络的采样策略,对损失函数进行优化。实验结果表明:这种改进的Faster RCNN算法能有效解决由于目标尺度变化和目标尺度过小带来的问题。相比通用的目标检测算法,该算法的准确度更高,速度更快,具有实际应用价值。 展开更多
关键词 微操作空间 目标检测 特征提取 局域建议网络采样策略 损失函数优化
在线阅读 下载PDF
基于双层DCT-Mask特征融合算法的堆叠垃圾实例分割
10
作者 李利 梁晶 +1 位作者 陈旭东 潘红光 《科学技术与工程》 北大核心 2024年第26期11341-11348,共8页
复杂堆叠场景下的垃圾实例分割受到严重遮挡和高密集性特点的影响,具有更大的检测难度。针对该问题,提出了一种结合DCT-Mask和双层特征融合网络思想的实例分割方法,用于高度堆叠场景下的垃圾实例分割。在网络结构层面,首先在数据预处理... 复杂堆叠场景下的垃圾实例分割受到严重遮挡和高密集性特点的影响,具有更大的检测难度。针对该问题,提出了一种结合DCT-Mask和双层特征融合网络思想的实例分割方法,用于高度堆叠场景下的垃圾实例分割。在网络结构层面,首先在数据预处理环节对特征数据进行解耦,并通过双分支特征融合降低堆叠对遮挡物体特征的影响,从而解决复杂堆叠遮挡下的实例分割问题。针对该场景下的密集混淆问题,在候选框分类回归部分融入了级联分类器,并优化了分割网络分支的损失函数。实验采用堆叠垃圾分类实例分割数据集进行实验验证,实验结果表明,该方法的AP_(50)、平均准确率mAP等指标有较大提升,且具有较好的分割效果和一定的可解释性。 展开更多
关键词 复杂堆叠遮挡场景 垃圾分类 双层特征融合网络 多级联检测器 损失函数优化
在线阅读 下载PDF
基于多层特征融合的行人检测方法研究 被引量:1
11
作者 黄玲娃 崔文成 邵虹 《计算机科学》 CSCD 北大核心 2024年第S02期479-485,共7页
针对遮挡行人检测识别困难、检测精度低,以及漏检率高等问题,在YOLOv7方法的基础上进行结构优化,提出了一种基于多层特征融合的行人检测网络模型,旨在提高遮挡行人检测的准确性。该方法是在主干网络特征提取部分采用ELAN-C模块,以增强... 针对遮挡行人检测识别困难、检测精度低,以及漏检率高等问题,在YOLOv7方法的基础上进行结构优化,提出了一种基于多层特征融合的行人检测网络模型,旨在提高遮挡行人检测的准确性。该方法是在主干网络特征提取部分采用ELAN-C模块,以增强行人特征信息的提取能力,从而提高行人检测的准确性。同时,在多尺度特征融合部分引入全局注意力机制构成多层特征融合,通过跨维度的信息交互,特别是对位置信息的关注,增强检测目标特征的表征,提高行人检测的准确性。此外,为了加速模型的收敛速度,采用EIoU作为损失函数,进一步提升检测框的定位精度。在公开数据集CityPresons上进行训练验证,模型对数平均漏检率MR-2下降,Bare,Partial,Reasonable,Heavy分别下降0.55%,0.91%,1.78%,1.68%,有效减少了漏检率。 展开更多
关键词 YOLOv7 行人检测 特征提取 多尺度融合 损失函数优化
在线阅读 下载PDF
改进YOLOv7网络在低空遥感图像目标检测中的应用 被引量:2
12
作者 张永智 何可人 戈珏 《计算机工程与科学》 CSCD 北大核心 2024年第7期1269-1277,共9页
针对低空遥感图像目标检测存在的尺度微小、背景复杂多变和计算资源有限等问题,提出了一种改进YOLOv7网络的低空遥感图像目标检测网络SimAM_YOLOv7。首先,基于张量火车分解,最小化冗余参数;其次,引入无参数的注意力机制,提高网络对目标... 针对低空遥感图像目标检测存在的尺度微小、背景复杂多变和计算资源有限等问题,提出了一种改进YOLOv7网络的低空遥感图像目标检测网络SimAM_YOLOv7。首先,基于张量火车分解,最小化冗余参数;其次,引入无参数的注意力机制,提高网络对目标的聚焦能力;最后,利用高效IoU(EIoU)优化定位损失,减小目标框与先验框的位置偏移,基于Focal Loss改进分类损失,解决正负样本的失衡问题。在真实低空遥感数据集上进行实验,在YOLOv7的基准下,所提出的网络在参数量减少3.27M时,mAP 50指标提高了4.63%,mAP 50:95指标提高了3.94%,充分验证了所提网络的有效性和优越性。 展开更多
关键词 张量分解 注意力机制 损失函数优化 小目标检测
在线阅读 下载PDF
基于轻量级网络的小目标检测算法 被引量:4
13
作者 关玉明 王肖霞 +2 位作者 杨风暴 吉琳娜 丁春山 《现代电子技术》 北大核心 2024年第1期44-50,共7页
针对YOLOv5算法在检测小目标时存在准确率较低的情况,提出旨在提高小目标检测准确率的轻量级网络KOS-YOLOv5算法。首先采用K-means++聚类技术选择一组合适的锚框尺寸作为模型的先验,对小目标实现更精确的锚框尺寸,使模型能适应不同大小... 针对YOLOv5算法在检测小目标时存在准确率较低的情况,提出旨在提高小目标检测准确率的轻量级网络KOS-YOLOv5算法。首先采用K-means++聚类技术选择一组合适的锚框尺寸作为模型的先验,对小目标实现更精确的锚框尺寸,使模型能适应不同大小的目标;其次利用简化正负样本分配策略(SimOTA)进行动态样本匹配,更好地优化损失函数;最后将空间上下文金字塔(SCP)模块集成到算法检测层中,促使骨干网络更加关注小目标的特征信息,用以增加目标特征提取能力,提高目标的检测准确率。结果表明,改进后的KOS-YOLOv5算法与传统的YOLOv5模型进行比较,算法在检测精确度(P)方面提高了4%,召回率(R)方面提高了2.4%,平均检测精度(mAP)提高了3.1%,损失函数值(Loss)降低了5%,最终检测精度为95.38%。 展开更多
关键词 小目标检测 轻量级网络 特征提取 优化损失函数 YOLOv5 K-means++
在线阅读 下载PDF
基于残差密集卷积自编码的高噪声图像去噪方法 被引量:3
14
作者 张杰 卢淼鑫 +3 位作者 李嘉康 徐大勇 黄雯潇 史小平 《计算机科学》 CSCD 北大核心 2024年第S01期555-561,共7页
在高噪声图像去噪中,传统卷积自编码器难以挖掘有效的深度特征信息,进而影响了图像的重建质量。为了提高高噪声图像的重建质量,提出了一种残差密集卷积自编码器网络模型。该模型首先使用卷积操作代替池化操作以提高高噪声图像的表征能力... 在高噪声图像去噪中,传统卷积自编码器难以挖掘有效的深度特征信息,进而影响了图像的重建质量。为了提高高噪声图像的重建质量,提出了一种残差密集卷积自编码器网络模型。该模型首先使用卷积操作代替池化操作以提高高噪声图像的表征能力;同时,在编码和解码阶段设计三级密集残差网络结构,实现图像特征的有效挖掘;最后,设计一个优化损失函数以进一步提高重建图像的质量。实验结果表明,设计的去噪方法能够从高噪声图像中重建高质量的图像,同时能够保留更多的细节特征信息,有效验证了该算法在图像去噪中的有效性。该方法能够有效解决高噪声图像的去噪问题,具有重要的应用价值。 展开更多
关键词 图像去噪 卷积自编码器 残差密集卷积 高噪声图像 优化损失函数
在线阅读 下载PDF
基于改进旋转目标检测模型的指针表读数全自动识别 被引量:1
15
作者 黄酋淦 徐望明 吴高鑫 《仪表技术与传感器》 CSCD 北大核心 2024年第11期28-33,72,共7页
针对指针表图像中刻度线与指针精确定位困难及在复杂环境下易出现误检和漏检的问题,提出一种基于改进旋转目标检测模型的指针表读数全自动识别方法。首先以YOLOv5s网络为基础,设计了高效的通道与空间注意力融合模块,以提升表盘示数特征... 针对指针表图像中刻度线与指针精确定位困难及在复杂环境下易出现误检和漏检的问题,提出一种基于改进旋转目标检测模型的指针表读数全自动识别方法。首先以YOLOv5s网络为基础,设计了高效的通道与空间注意力融合模块,以提升表盘示数特征提取能力;其次设计了E-CIoU Loss以优化损失函数,增强指针边界框回归能力;同时,引入环形平滑标签以适应旋转目标检测任务;然后,利用改进的概率霍夫变换实现指针精确重定位;最后,利用极坐标平面上指针和刻度线的相对位置关系计算读数识别结果。实验结果表明:与基准模型相比,该方法有效提升了表盘示数特征检测精度,mAP值达到了96.8%,且最终读数识别平均相对误差达到了0.52%,可满足实际应用需求。 展开更多
关键词 旋转目标检测 注意力机制 优化损失函数 改进概率霍夫变换
在线阅读 下载PDF
基于改进CNN的铝轮毂背腔字符识别 被引量:7
16
作者 程淑红 周斌 《计算机工程》 CAS CSCD 北大核心 2019年第5期182-186,共5页
铝轮毂背腔字符分辨率较低、背景噪声较大,对其进行识别时不易提取几何特征和纹理特征。为此,提出一种基于改进卷积神经网络(CNN)的字符识别方法。在原始CNN的基础上引入改进的inception结构对网络构架进行优化,以提升计算资源的利用率... 铝轮毂背腔字符分辨率较低、背景噪声较大,对其进行识别时不易提取几何特征和纹理特征。为此,提出一种基于改进卷积神经网络(CNN)的字符识别方法。在原始CNN的基础上引入改进的inception结构对网络构架进行优化,以提升计算资源的利用率,并在保持网络计算资源不变的前提下增加网络的宽度和深度,降低字符识别时间。实验结果表明,该方法训练准确率达99%以上,识别准确率达98.5%,识别效果优于支持向量机、BP神经网络等方法。 展开更多
关键词 卷积神经网络 inception结构 网络构架 背腔字符 损失函数优化
在线阅读 下载PDF
融合注意力机制的CS-BiLSTM深度回声消除算法 被引量:3
17
作者 许春冬 王茹霞 +2 位作者 徐锦武 凌贤鹏 黄乔月 《现代电子技术》 2023年第5期55-59,共5页
在全双工通信系统中,声学回声会降低用户的体验,针对在双向通话场景下自适应滤波算法消除声学回声效果不理想以及非线性声学回声难以消除的问题,提出一种注意力机制与BiLSTM网络相结合的CS-BiLSTM深度声学回声消除算法。首先通过构建BiL... 在全双工通信系统中,声学回声会降低用户的体验,针对在双向通话场景下自适应滤波算法消除声学回声效果不理想以及非线性声学回声难以消除的问题,提出一种注意力机制与BiLSTM网络相结合的CS-BiLSTM深度声学回声消除算法。首先通过构建BiLSTM网络提取语音的时序特征,之后引入通道和空间注意力机制提取回声信号的空间特征信息,并融合均方根误差与平均绝对误差提出一种新的损失函数,提高模型的鲁棒性。改进后的CS-BiLSTM网络模型能够获得清晰的语音信号,具有更好的回声消除性能。仿真结果表明,在非线性回声和双向通话环境下,与其他几种参考算法相比,所提出的CS-BiLSTM算法在感知语音质量评价方面明显优于其他算法,更有效地实现了回声消除,此外,该算法结构简单且模型参数量更少。 展开更多
关键词 回声消除 双工通信 注意力机制 特征提取 语音信号获得 损失函数优化 回声系统模型 对比实验
在线阅读 下载PDF
面向航天光学遥感复杂场景图像的舰船检测 被引量:10
18
作者 刘忻伟 朴永杰 +2 位作者 郑亮亮 徐伟 籍浩林 《光学精密工程》 EI CAS CSCD 北大核心 2023年第6期892-904,共13页
基于深度学习的目标检测算法直接应用于航天光学遥感(Space Optical Remote Sensing,SORS)复杂场景图像中会出现舰船目标检测效果不佳的问题。针对该问题,本文以近海复杂背景的密集排布舰船和远海多干扰中小目标舰船为检测对象,提出一... 基于深度学习的目标检测算法直接应用于航天光学遥感(Space Optical Remote Sensing,SORS)复杂场景图像中会出现舰船目标检测效果不佳的问题。针对该问题,本文以近海复杂背景的密集排布舰船和远海多干扰中小目标舰船为检测对象,提出一种改进的YOLOX-s(Improved You Only Look Once-s,IM-YOLO-s)算法。在特征提取阶段,引入CA位置注意力模块,分别从高度与宽度两个方向对目标信息的位置进行权重分配,提高了模型的检测精度;在特征融合阶段,将BiFPN加权特征融合算法应用到IM-YOLO-s的颈部结构,进一步提升了小目标船只检测精度;在模型优化训练阶段,以CIoU损失替代IoU损失、以变焦损失替代置信度损失、调整类别损失权重,增大了正样本分布密集区域的训练权重,减少了密集分布船只的漏检率。另外,在HRSC2016数据集的基础上增加额外的离岸中小舰船图像,自建了HRSC2016-Gg数据集,HRSC2016-Gg数据集增强了海上船只及中小像素船只检测时的鲁棒性。通过数据集HRSC2016-Gg评测算法性能,实验结果表明:IM-YOLO-s对于SORS场景舰船检测的召回率为97.18%,AP@0.5为96.77%,F1值为0.95,较原YOLOX-s算法分别提高了2.23%,2.40%和0.01。这充分表明该算法可以对SORS复杂背景图像进行高质量舰船检测。 展开更多
关键词 舰船检测 深度学习 CA注意力模块 加权特征融合 损失函数优化
在线阅读 下载PDF
基于元学习和PINN的变工况刀具磨损精确预测方法 被引量:7
19
作者 万鹏 李迎光 +1 位作者 华家玘 刘长青 《南京航空航天大学学报》 CAS CSCD 北大核心 2022年第3期387-396,共10页
刀具磨损预测对保证零件加工质量和效率、降低加工成本具有重要作用,尤其是在广泛采用难加工材料的航空航天制造领域。数据与机理融合模型能够结合机理模型和数据驱动模型的优势,是实现刀具磨损预测的有效手段。然而现有的融合方法难以... 刀具磨损预测对保证零件加工质量和效率、降低加工成本具有重要作用,尤其是在广泛采用难加工材料的航空航天制造领域。数据与机理融合模型能够结合机理模型和数据驱动模型的优势,是实现刀具磨损预测的有效手段。然而现有的融合方法难以有效平衡数据和机理对模型的权重,导致难以真正实现融合模型的预期效果。本文提出了一种基于元学习(Meta learning,ML)和PINN(Physics-informed neural network)的刀具磨损预测方法,通过磨损机理约束数据驱动模型的解空间,并结合元学习算法优化融合模型的损失函数以合理利用数据和机理提供的信息。实例验证结果表明,本文所提出的方法能有效提高变工况下的刀具磨损预测精度和稳定性。 展开更多
关键词 航空航天制造 刀具磨损预测 数据与机理 元学习 损失函数优化
在线阅读 下载PDF
基于改进YOLO v3模型的奶牛发情行为识别研究 被引量:18
20
作者 王少华 何东健 《农业机械学报》 EI CAS CSCD 北大核心 2021年第7期141-150,共10页
为提高复杂环境下奶牛发情行为识别精度和速度,提出了一种基于改进YOLO v3模型的奶牛发情行为识别方法。针对YOLO v3模型原锚点框尺寸不适用于奶牛数据集的问题,对奶牛数据集进行聚类,并对获得的新锚点框尺寸进行优化;针对因数据集中奶... 为提高复杂环境下奶牛发情行为识别精度和速度,提出了一种基于改进YOLO v3模型的奶牛发情行为识别方法。针对YOLO v3模型原锚点框尺寸不适用于奶牛数据集的问题,对奶牛数据集进行聚类,并对获得的新锚点框尺寸进行优化;针对因数据集中奶牛个体偏大等原因而导致模型识别准确率低的问题,引入DenseBlock结构对YOLO v3模型原特征提取网络进行改进,提高了模型识别性能;将YOLO v3模型原边界框损失函数使用均方差(MSE)作为损失函数度量改为使用FIoU和两框中心距离Dc度量,提出了新的边界框损失函数,使其具有尺度不变性。从96段具有发情爬跨行为的视频片段中各选取50帧图像,根据发情爬跨行为在活动区出现位置的不确定性和活动区光照变化的特点,对图像进行水平翻转、±15°旋转、随机亮度增强(降低)等数据增强操作,用增强后的数据构建训练集和验证集,对改进后的模型进行训练,并依据F1、mAP、准确率P和召回率R指标进行模型优选。在测试集上的试验表明,本文方法模型的识别准确率为99.15%,召回率为97.62%,且处理速度达到31 f/s,能够满足复杂养殖环境、全天候条件下奶牛发情行为的准确、实时识别。 展开更多
关键词 奶牛发情 爬跨行为 YOLO v3 锚点框优化 DenseBlock 损失函数优化
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部