损伤反射波的准确提取可以使得基于主动Lamb波技术的损伤检测更有效的进行,而边界等结构特征反射波与损伤反射波产生的混叠,是提取损伤反射波的一个重要障碍。针对混叠情况,目前已有的主动Lamb波损伤监测方法大多采用基于参考信号的方...损伤反射波的准确提取可以使得基于主动Lamb波技术的损伤检测更有效的进行,而边界等结构特征反射波与损伤反射波产生的混叠,是提取损伤反射波的一个重要障碍。针对混叠情况,目前已有的主动Lamb波损伤监测方法大多采用基于参考信号的方法获取损伤散射信号,容易受到结构和环境等外界因素的影响。而由于在传感器接收到的Lamb波信号中,直达波之后时间段内的信号并不是任意波形,而应该是由数个反射波组成的,因此只要得到与目标信号最相似的反射波叠加组合,就可以认为成功解读了该目标信号,即相当于得到了损伤反射波。因此,提出一种基于最大相似性的Lamb波损伤信号分解算法。在分析Lamb波传播特性的基础上模拟边界反射波和损伤反射波,然后基于最大相似性原则,通过遗传算法对二者的合成信号的各个参数进行优化,使合成信号与目标信号之间的相似度达到最大。最后,使用Time of Flight(To F)方法对损伤进行了定位。铝板上的试验结果表明,该方法能够准确地提取出与边界反射波混叠的损伤反射波,从而实现对边界附近损伤的检测。展开更多
The appearance and accumulation of internal impact damage seriously influence overall performance of carbon fiber reinforced plastic(CFRP).Thus,this study evaluates the change in impact damage number by using linear a...The appearance and accumulation of internal impact damage seriously influence overall performance of carbon fiber reinforced plastic(CFRP).Thus,this study evaluates the change in impact damage number by using linear and nonlinear ultrasonic Lamb wave detection methods,and compares these two detection results.An ultrasonic wave simulation model for composite structure with impact damage is established using the finite element method,and the interaction between impact damage and the ultrasonic wave is simulated.Simulation results demonstrate that the ultrasonic amplitude linearly decreases,and the relative nonlinear parameter linearly increases in proportion to the impact number,respectively.The linear-fitting slope of nonlinear parameter is 0.38 per impact number at an input frequency of 1.0 MHz.It is far higher than that of the linear ultrasonic amplitude,which is only-0.12.However,with the increase of impact damage,the linear growth of nonlinear parameters mainly depends on the decrease in ultrasonic amplitude rather than the accumulation of second harmonic amplitude.In the linear ultrasonic amplitude detection,the linear fitting slope at 1.1 MHz is-0.14,which is lower than those at 0.9 MHz and 1.0 MHz.Meanwhile,in the nonlinear ultrasonic parameter detection,the linear fitting slope at 1.1 MHz is 0.92,which is higher than those at 0.9 MHz and 1.0 MHz.The results show that higher frequencies lead to greater attenuation of ultrasonic amplitude and a larger increase in nonlinear parameters,which can enhance the sensitivity of both linear and nonlinear ultrasonic detections.The accuracy of simulation results is demonstrated through the low-velocity impact and ultrasonic experiments.The results show that compared with nonlinear ultrasonic technology,the linear ultrasonic technology is more suitable for impact damage assessment of carbon fiber reinforced plastic because of its simpler detection process and higher sensitivity.展开更多
This paper presents an optical sensor technique used in the damage evaluation which is formed by structurally integrated fiber optic reticulate sensors embedded in the composite materials. The fibers are processed by ...This paper presents an optical sensor technique used in the damage evaluation which is formed by structurally integrated fiber optic reticulate sensors embedded in the composite materials. The fibers are processed by chemical method and their outsides are peeled to form particles of irregular distribution and they differ in size, so the slight disturbance range of stochastic wall are formed in fibers. According to the characteristics of power loss of waveguide mode caused by slight disturbance of stochastic wall and radiative mode transmission, the range of slight disturbance of stochastic wall may be served as the sensitive range of the sensor. On the basis of theory of slight disturbance of stochastic wall of planar optical waveguide, the relation between the corrosion time and the opposite power loss by experiments is investigated. In this paper, the measurement results of object of SIFORS are also presented. The results show that the optical sensor technique may be used in the damage evaluation of an aircraft.展开更多
A two-step method is proposed for detection and identification of invisible impact damage in composite structure under temperature changes using Lamb waves.First,a statistical outlier analysis is employed to distingui...A two-step method is proposed for detection and identification of invisible impact damage in composite structure under temperature changes using Lamb waves.First,a statistical outlier analysis is employed to distinguish whether the changes of Lamb wave signals are induced by damage within a monitoring area or are only affected by temperature changes.Damage indices are defined after the Lamb wave signals are processed by Fourier transform,and a Monte Carlo procedure is used to obtain the damage threshold value for the damage indices at the undamaged state.If the damage indices in the operation state exceed the threshold value,the presence of damage is determined.Then,a probabilistic damage imaging algorithm displaying probabilities of the presence of damage within the monitoring area is adopted to fuse information collected from multiple actuator-sensor paths to identify the location of damage.Damage indices under damaged state are used to generate the diagnostic image.Experimental study on a stiffened composite panel with random temperature changes is performed to demonstrate the effectiveness of the proposed method.展开更多
Objective To evaluate the feasibility and accuracy of measurement of myocardial perfusion defects with intravenous contrast-enhanced real-time three-dimensional echocardiography (CE-RT3DE). Methods RT3DE was performed...Objective To evaluate the feasibility and accuracy of measurement of myocardial perfusion defects with intravenous contrast-enhanced real-time three-dimensional echocardiography (CE-RT3DE). Methods RT3DE was performed in 21 open-chest mongrel dogs undergoing acute ligation of the left anterior descending artery (LAD, n=14) or distal branch of the left circumflex artery (LCX, n=7). A perfluorocarbon microbubble contrast agent was injected intravenously to assess the resulting myocardial perfusion defects with Philips Sonos-7500 ultrasound system. Evans blue dye was injected into the occluded coronary artery for subsequent anatomic identification of underperfused myocardium. In vitro anatomic measurement of myocardial mass after removal of the animal’s heart was regarded as the control. Blinded off-line calculation of left ventricular mass and perfusion defect mass from RT3DE images were performed using an interactive aided-manual tracing technique.Results Total left ventricular (LV) myocardial mass ranged from 38.9 to 78.5 (mean±SD: 60.0±10.1) g. The mass of perfusion defect ranged from 0 to 21.4 (mean±SD: 12.0±5.0) g or 0 to 27% of total LV mass (mean±SD: 19%±6%). The RT3DE estimation of total LV mass (mean±SD: 59.8±9.9 g) strongly correlated with the anatomic measurement (r=0.98; y=2.01+0.96x). The CE-RT3DE calculation of the mass of underperfused myocardium (mean±SD: 12.3±5.3 g) also strongly correlated with the anatomic measurement (r=0.96; y=-0.10+1.04x) and when expressed as percentage of total LV mass (r=0.95; y=-0.20+1.04x). Conclusions RT3DE with myocardial contrast opacification could accurately estimate underperfused myocardial mass in dogs of acute coronary occlusion and would play an important role in quantitative assessment of myocardial perfusion defects in patients with coronary artery disease.展开更多
In this paper, we propose a pre-processing method for the detection of wire-rope signals. This is necessary because of the lack of processing methods that are currently employed. First, we investigated the one-dimensi...In this paper, we propose a pre-processing method for the detection of wire-rope signals. This is necessary because of the lack of processing methods that are currently employed. First, we investigated the one-dimensional discrete morphological and wavelet transform. Then, we developed a pre-processing model that is based on the morphological wavelet-filtering algorithm. We then proposed a modified morphology filtering algorithm. We also designed an experiment platform for wire-rope detection.Eight levels of localized flaws(LFs) and damage were formed in the wire-rope specimen. We performed a series of experimental studies, and the results show that the proposed method can effectively filter the drift signal. The signal-to-noise ratio of the new filtering algorithm was over 26 d B. The signal-to-noise ratio of the existing method is less than 15 d B, and the noise-signal ratio of the new filtering algorithm has improved by 73%. Based on our results, the filtering effect of the proposed method is better than that of the present method. This study has great significance and practical value in engineering applications.展开更多
文摘损伤反射波的准确提取可以使得基于主动Lamb波技术的损伤检测更有效的进行,而边界等结构特征反射波与损伤反射波产生的混叠,是提取损伤反射波的一个重要障碍。针对混叠情况,目前已有的主动Lamb波损伤监测方法大多采用基于参考信号的方法获取损伤散射信号,容易受到结构和环境等外界因素的影响。而由于在传感器接收到的Lamb波信号中,直达波之后时间段内的信号并不是任意波形,而应该是由数个反射波组成的,因此只要得到与目标信号最相似的反射波叠加组合,就可以认为成功解读了该目标信号,即相当于得到了损伤反射波。因此,提出一种基于最大相似性的Lamb波损伤信号分解算法。在分析Lamb波传播特性的基础上模拟边界反射波和损伤反射波,然后基于最大相似性原则,通过遗传算法对二者的合成信号的各个参数进行优化,使合成信号与目标信号之间的相似度达到最大。最后,使用Time of Flight(To F)方法对损伤进行了定位。铝板上的试验结果表明,该方法能够准确地提取出与边界反射波混叠的损伤反射波,从而实现对边界附近损伤的检测。
基金supported by the Na⁃tional Natural Science Foundation of China(No.11972016)the Natural Science Foundation of the Jiangsu Higher Educa⁃tion Institutions of China(No.23KJD460005)Scientif⁃ic Research Foundation for the Introduction of Talent in Nan⁃jing Vocational University of Industry Technology(No.YK21-04-02).
文摘The appearance and accumulation of internal impact damage seriously influence overall performance of carbon fiber reinforced plastic(CFRP).Thus,this study evaluates the change in impact damage number by using linear and nonlinear ultrasonic Lamb wave detection methods,and compares these two detection results.An ultrasonic wave simulation model for composite structure with impact damage is established using the finite element method,and the interaction between impact damage and the ultrasonic wave is simulated.Simulation results demonstrate that the ultrasonic amplitude linearly decreases,and the relative nonlinear parameter linearly increases in proportion to the impact number,respectively.The linear-fitting slope of nonlinear parameter is 0.38 per impact number at an input frequency of 1.0 MHz.It is far higher than that of the linear ultrasonic amplitude,which is only-0.12.However,with the increase of impact damage,the linear growth of nonlinear parameters mainly depends on the decrease in ultrasonic amplitude rather than the accumulation of second harmonic amplitude.In the linear ultrasonic amplitude detection,the linear fitting slope at 1.1 MHz is-0.14,which is lower than those at 0.9 MHz and 1.0 MHz.Meanwhile,in the nonlinear ultrasonic parameter detection,the linear fitting slope at 1.1 MHz is 0.92,which is higher than those at 0.9 MHz and 1.0 MHz.The results show that higher frequencies lead to greater attenuation of ultrasonic amplitude and a larger increase in nonlinear parameters,which can enhance the sensitivity of both linear and nonlinear ultrasonic detections.The accuracy of simulation results is demonstrated through the low-velocity impact and ultrasonic experiments.The results show that compared with nonlinear ultrasonic technology,the linear ultrasonic technology is more suitable for impact damage assessment of carbon fiber reinforced plastic because of its simpler detection process and higher sensitivity.
文摘This paper presents an optical sensor technique used in the damage evaluation which is formed by structurally integrated fiber optic reticulate sensors embedded in the composite materials. The fibers are processed by chemical method and their outsides are peeled to form particles of irregular distribution and they differ in size, so the slight disturbance range of stochastic wall are formed in fibers. According to the characteristics of power loss of waveguide mode caused by slight disturbance of stochastic wall and radiative mode transmission, the range of slight disturbance of stochastic wall may be served as the sensitive range of the sensor. On the basis of theory of slight disturbance of stochastic wall of planar optical waveguide, the relation between the corrosion time and the opposite power loss by experiments is investigated. In this paper, the measurement results of object of SIFORS are also presented. The results show that the optical sensor technique may be used in the damage evaluation of an aircraft.
基金Supported by the Aeronautical Science Foundation of China(2008ZA52012)the Six Kinds of Excellent Talent Project in Jiangsu Province of China(2010JZ004)the Research Foundation of Nanjing University of Aeronautics and Astronautics(NS2010027)~~
文摘A two-step method is proposed for detection and identification of invisible impact damage in composite structure under temperature changes using Lamb waves.First,a statistical outlier analysis is employed to distinguish whether the changes of Lamb wave signals are induced by damage within a monitoring area or are only affected by temperature changes.Damage indices are defined after the Lamb wave signals are processed by Fourier transform,and a Monte Carlo procedure is used to obtain the damage threshold value for the damage indices at the undamaged state.If the damage indices in the operation state exceed the threshold value,the presence of damage is determined.Then,a probabilistic damage imaging algorithm displaying probabilities of the presence of damage within the monitoring area is adopted to fuse information collected from multiple actuator-sensor paths to identify the location of damage.Damage indices under damaged state are used to generate the diagnostic image.Experimental study on a stiffened composite panel with random temperature changes is performed to demonstrate the effectiveness of the proposed method.
文摘Objective To evaluate the feasibility and accuracy of measurement of myocardial perfusion defects with intravenous contrast-enhanced real-time three-dimensional echocardiography (CE-RT3DE). Methods RT3DE was performed in 21 open-chest mongrel dogs undergoing acute ligation of the left anterior descending artery (LAD, n=14) or distal branch of the left circumflex artery (LCX, n=7). A perfluorocarbon microbubble contrast agent was injected intravenously to assess the resulting myocardial perfusion defects with Philips Sonos-7500 ultrasound system. Evans blue dye was injected into the occluded coronary artery for subsequent anatomic identification of underperfused myocardium. In vitro anatomic measurement of myocardial mass after removal of the animal’s heart was regarded as the control. Blinded off-line calculation of left ventricular mass and perfusion defect mass from RT3DE images were performed using an interactive aided-manual tracing technique.Results Total left ventricular (LV) myocardial mass ranged from 38.9 to 78.5 (mean±SD: 60.0±10.1) g. The mass of perfusion defect ranged from 0 to 21.4 (mean±SD: 12.0±5.0) g or 0 to 27% of total LV mass (mean±SD: 19%±6%). The RT3DE estimation of total LV mass (mean±SD: 59.8±9.9 g) strongly correlated with the anatomic measurement (r=0.98; y=2.01+0.96x). The CE-RT3DE calculation of the mass of underperfused myocardium (mean±SD: 12.3±5.3 g) also strongly correlated with the anatomic measurement (r=0.96; y=-0.10+1.04x) and when expressed as percentage of total LV mass (r=0.95; y=-0.20+1.04x). Conclusions RT3DE with myocardial contrast opacification could accurately estimate underperfused myocardial mass in dogs of acute coronary occlusion and would play an important role in quantitative assessment of myocardial perfusion defects in patients with coronary artery disease.
基金the National Natural Science Foundation of China (No. 51404276)the Fundamental Research Funds for the Central Universities (Nos. 2014QJ01 and 2015QJ04)
文摘In this paper, we propose a pre-processing method for the detection of wire-rope signals. This is necessary because of the lack of processing methods that are currently employed. First, we investigated the one-dimensional discrete morphological and wavelet transform. Then, we developed a pre-processing model that is based on the morphological wavelet-filtering algorithm. We then proposed a modified morphology filtering algorithm. We also designed an experiment platform for wire-rope detection.Eight levels of localized flaws(LFs) and damage were formed in the wire-rope specimen. We performed a series of experimental studies, and the results show that the proposed method can effectively filter the drift signal. The signal-to-noise ratio of the new filtering algorithm was over 26 d B. The signal-to-noise ratio of the existing method is less than 15 d B, and the noise-signal ratio of the new filtering algorithm has improved by 73%. Based on our results, the filtering effect of the proposed method is better than that of the present method. This study has great significance and practical value in engineering applications.