针对不同含水路径的膏溶角砾岩试样,采用RMT-150B型岩石电液伺服试验机,进行了人工增湿和天然情况下力学性能的试验研究。比较分析了人工增湿和天然条件下含水量对岩石应力—应变曲线、峰值强度、峰值应变、弹性模量和泊松比变化情况。...针对不同含水路径的膏溶角砾岩试样,采用RMT-150B型岩石电液伺服试验机,进行了人工增湿和天然情况下力学性能的试验研究。比较分析了人工增湿和天然条件下含水量对岩石应力—应变曲线、峰值强度、峰值应变、弹性模量和泊松比变化情况。分析结果表明,含水量的不同对岩石的峰值强度、弹性模量和峰值应变等力学性质有显著影响,随着含水量的增加,膏溶角砾岩的力学性能劣化明显,峰值应力和弹性模量呈指数减少,而峰值应变呈线性增大。含水量相同情况下,人工增湿的岩样相对于天然含水量岩样,岩石的力学性质发生了很大的变化,峰值应力、弹性模量都有很大的下降,表现出不同含水路径力学特性的差异。基于力学性质随含水量的变化,从膏溶角砾岩弹性模量变化规律入手,导出了水的物理化学损伤演化方程和一维WM(water and mechanical)耦合损伤本构方程。展开更多
During underground excavation,the surrounding rock mass is subjected to complex cyclic stress,significantly impacting its long-term stability,especially under varying water content conditions where this effect is ampl...During underground excavation,the surrounding rock mass is subjected to complex cyclic stress,significantly impacting its long-term stability,especially under varying water content conditions where this effect is amplified.However,research on the mechanical response mechanisms of surrounding rock mass under such conditions remains inadequate.This study utilized acoustic emission(AE)and resistivity testing to monitor rock fracture changes,revealing the rock’s damage state and characterizing the damage evolution process during uniaxial cyclic loading and unloading.First,a damage variable equation was established based on AE and resistivity parameters,leading to the derivation of a corresponding damage constitutive equation.Uniaxial cyclic loading and unloading tests were then conducted on sandstone samples with varying water contents,continuously monitoring AE signals and resistivity,along with computed tomography scans before and after failure.The predictions from the damage constitutive equation were compared with experimental results.This comparison shows that the proposed damage variable equation effectively characterizes the damage evolution of sandstone during loading and unloading,and that the constitutive equation closely fits the experimental data.This study provides a theoretical basis for monitoring and assessing the responses of surrounding rock mass during underground excavation.展开更多
文摘针对不同含水路径的膏溶角砾岩试样,采用RMT-150B型岩石电液伺服试验机,进行了人工增湿和天然情况下力学性能的试验研究。比较分析了人工增湿和天然条件下含水量对岩石应力—应变曲线、峰值强度、峰值应变、弹性模量和泊松比变化情况。分析结果表明,含水量的不同对岩石的峰值强度、弹性模量和峰值应变等力学性质有显著影响,随着含水量的增加,膏溶角砾岩的力学性能劣化明显,峰值应力和弹性模量呈指数减少,而峰值应变呈线性增大。含水量相同情况下,人工增湿的岩样相对于天然含水量岩样,岩石的力学性质发生了很大的变化,峰值应力、弹性模量都有很大的下降,表现出不同含水路径力学特性的差异。基于力学性质随含水量的变化,从膏溶角砾岩弹性模量变化规律入手,导出了水的物理化学损伤演化方程和一维WM(water and mechanical)耦合损伤本构方程。
基金Projects(52279117,52325905)supported by the National Natural Science Foundation of ChinaProject(DJ-HXGG-2023-16)supported by the Technology Project of PowerChinaProject(SKLGME-JBGS2401)supported by the State Key Laboratory of Geomechanics and Geotechnical Engineering,China。
文摘During underground excavation,the surrounding rock mass is subjected to complex cyclic stress,significantly impacting its long-term stability,especially under varying water content conditions where this effect is amplified.However,research on the mechanical response mechanisms of surrounding rock mass under such conditions remains inadequate.This study utilized acoustic emission(AE)and resistivity testing to monitor rock fracture changes,revealing the rock’s damage state and characterizing the damage evolution process during uniaxial cyclic loading and unloading.First,a damage variable equation was established based on AE and resistivity parameters,leading to the derivation of a corresponding damage constitutive equation.Uniaxial cyclic loading and unloading tests were then conducted on sandstone samples with varying water contents,continuously monitoring AE signals and resistivity,along with computed tomography scans before and after failure.The predictions from the damage constitutive equation were compared with experimental results.This comparison shows that the proposed damage variable equation effectively characterizes the damage evolution of sandstone during loading and unloading,and that the constitutive equation closely fits the experimental data.This study provides a theoretical basis for monitoring and assessing the responses of surrounding rock mass during underground excavation.