The polarization properties of light are widely applied in imaging,communications,materials analy⁃sis,and life sciences.Various methods have been developed that can measure the polarization information of a target.How...The polarization properties of light are widely applied in imaging,communications,materials analy⁃sis,and life sciences.Various methods have been developed that can measure the polarization information of a target.However,conventional polarization detection systems are often bulky and complex,limiting their poten⁃tial for broader applications.To address the challenges of miniaturization,integrated polarization detectors have been extensively explored in recent years,achieving significant advancements in performance and functionality.In this review,we focus mainly on integrated polarization detectors with innovative features,including infinitely high polarization discrimination,ultrahigh sensitivity to polarization state change,full Stokes parameters measure⁃ment,and simultaneous perception of polarization and other key properties of light.Lastly,we discuss the oppor⁃tunities and challenges for the future development of integrated polarization photodetectors.展开更多
High-static-low-dynamic stiffness (HSLDS) vibration isolators have been demonstrated to be an effective means of attenuating low-frequency vibrations, and may be utilized for ship shafting applications to mitigate tor...High-static-low-dynamic stiffness (HSLDS) vibration isolators have been demonstrated to be an effective means of attenuating low-frequency vibrations, and may be utilized for ship shafting applications to mitigate torsional vibration. This paper presents the construction of a highly compact HSLDS torsional vibration isolator by connecting positive and negative stiffness components in paral lel. Based on mechanical model analysis, the restoring torque of negative stiffness components is de rived from their springs and connecting rods, while that of positive stiffness components is obtained through their circular section flexible rods. The quasizero stiffness characteristics of the HSLDS iso lator are achieved through a combination of static structural simulation and experimental test. The tor sional vibration isolation performance is assessed by means of numerical simulation and theory analy sis. Finally, the frequency-sweep vibration test is conducted. The test results indicate that the HSLDS torsional vibration isolator exhibits superior low-frequency isolation performance compared to its linear counterpart, rendering it a promising solution for mitigating low-frequency torsional vi bration in ship shafting.展开更多
For the purpose of analyzing the torsional vibration caused by the gravitational unbalance torque arisen in a spindle system when it is machining heavy work piece,a 10-DOF lumped parameter model was made for the machi...For the purpose of analyzing the torsional vibration caused by the gravitational unbalance torque arisen in a spindle system when it is machining heavy work piece,a 10-DOF lumped parameter model was made for the machine tool spindle system with geared transmission.By using the elementary method and Runge-Kutta method in Matlab,the eigenvalue problem was solved and the pure torsional vibration responses were obtained and examined.The results show that the spindle system cannot operate in the desired constant rotating speed as far as the gravitational unbalance torque is engaged,so it may cause bad effect on machining accuracy.And the torsional vibration increases infinitely near the resonant frequencies,so the spindle system cannot operate normally during these spindle speed ranges.展开更多
The effects of concrete's time-variant elastic modulus,casting structural components,assembling temporary shoring framework system,and shock by operating construction equipment on dynamic behavior of the reinforce...The effects of concrete's time-variant elastic modulus,casting structural components,assembling temporary shoring framework system,and shock by operating construction equipment on dynamic behavior of the reinforced concrete frame structure during construction were investigated. The dynamic tests of an eight-storey reinforced concrete frame structure during full-scaled stages of the sixth storey construction cycle were carried out by ambient vibration. Natural frequencies,corresponding mode shapes and damping ratio were determined by power spectrum processing the tested signal data in frequency domain. The changes of frequencies,mode shapes and damping ratios at different construction stages were given. The results show that natural frequencies and modal damping ratios reach the maximum at stage of casting fresh concrete,especially for higher modes. Modal damping ratios at each construction stage are less than 5% of those during usage.展开更多
A new hybrid piezoelectric ultrasonic motor, which consists of one rotor and two stators, was proposed in this paper. In order to match the resonance frequencies of longitudinal vibration and torsional vibration excit...A new hybrid piezoelectric ultrasonic motor, which consists of one rotor and two stators, was proposed in this paper. In order to match the resonance frequencies of longitudinal vibration and torsional vibration excited in the stators, a symmetrical structure was adopted in design of the motor. A so-called mass matching method, namely adding two rings to the outside circumference of the two stators respectively, was used to adjust the resonance frequencies of these two vibrations. A finite element model was developed using ANSYS software for the purpose of analyzing the resonance frequencies of longitudinal vibration and torsional vibration as well as the function of the adjusting rings. The results show that the resonance frequency of torsional vibration varies with the position of the ring, but the resonance frequency of longitudinal vibration changes little. By means of adjusting the mass and the position of the rings, the first order resonance frequency of longitudinal vibration is coincided with that of torsional vibration and the value is 20.75kHz. An experimental prototype motor was fabricated according to the analytical results and its performance is in agreement with the theoretical predictions. The speed of motor reaches the maximum 92r/min at the working frequency 19.0kHz.展开更多
The self-excited vibration problems of maglev vehicle-bridge interaction system were addressed, which greatly degrades the stability of the levitation control, decreases the ride comfort, and restricts the cost of the...The self-excited vibration problems of maglev vehicle-bridge interaction system were addressed, which greatly degrades the stability of the levitation control, decreases the ride comfort, and restricts the cost of the whole system. Firstly, the coupled model containing the quintessential parts was built, and the mechanism of self-excited vibration was explained in terms of energy transmission from levitation system to bridge. Then, the influences of the parameters of the widely used integral-type proportion and derivation(PD) controller and the delay of signals on the stability of the interaction system were analyzed. The result shows that the integral-type PD control is a nonoptimal approach to solve the self-excited vibration completely. Furthermore, the differential-type PD controller can guarantee the passivity of levitation system at full band. However, the differentiation of levitation gap should be filtered by a low-pass filter due to noise of gap differentiation. The analysis indicates that a well tuned low-pass filter can still keep the coupled system stable.展开更多
Demand for large vibrating screen is huge in the mineral processing industry. As bending and random vibration are not considered in a traditional design method for beam structures of a large vibrating screen, fatigue ...Demand for large vibrating screen is huge in the mineral processing industry. As bending and random vibration are not considered in a traditional design method for beam structures of a large vibrating screen, fatigue damage occurs frequently to affect the screening performance. This work aims to conduct a systematic mechanics analysis of the beam structures and improve the design method. Total motion of a beam structure in screening process can be decomposed into the traditional followed rigid translation(FRT), bending vibration(BV) and axial linear-distributed random rigid translation(ALRRT) excited by the side-plates. When treated as a generalized single-degree-of-freedom(SDOF) elastic system analytically, the BV can be solved by the Rayleigh's method. Stochastic analysis for random process is conducted for the detailed ALRRT calculation. Expressions for the mechanics property, namely, the shearing force and bending-moment with respect to BV and ALRRT, are derived, respectively. Experimental and numerical investigations demonstrate that the largest BV exists at the beam center and can be nearly ignored in comparison with the FRT during a simplified engineering design. With the BV and FRT considered, the mechanics property accords well with the practical situation with the maximum error of 6.33%, which is less than that obtained by traditional method.展开更多
In order to solve fretting instability problem of gear shaft shoulder due to torsional vibration in mechanical system, the mathematical model of fretting instability vibration of gear shaft shoulder was established by...In order to solve fretting instability problem of gear shaft shoulder due to torsional vibration in mechanical system, the mathematical model of fretting instability vibration of gear shaft shoulder was established by adopting the method of combining kinematics and tribology, and the numerical analysis was applied to the fretting instability mechanism of gear shaft shoulder by introducing the friction instability damping ratio. The numerical results show that the main factors causing the unstable and vibrating gear shaft shoulder are the large tightening torque and too large static friction coefficient. The reasonable values of the static friction coefficient, the amount of interference and tightening torque can effectively mitigate the fretting instability phenomenon of gear shaft shoulder. The experimental results verify that damping plays a significant role in eliminating the vibration of gear shaft control system.展开更多
By taking cross-wind forces acting on trains into consideration, a dynamic analysis method of the cross-wind and high-speed train and slab track system was proposed on the basis of the analysis theory of spatial vibra...By taking cross-wind forces acting on trains into consideration, a dynamic analysis method of the cross-wind and high-speed train and slab track system was proposed on the basis of the analysis theory of spatial vibration of high-speed train and slab track system. The corresponding computer program was written by FORTRAN language. The dynamic responses of the high-speed train and slab track under cross-wind action were calculated. Meanwhile, the effects of the cross-wind on the dynamic responses of the system were also analyzed. The results show that the cross-wind has a significant influence on the lateral and vertical displacement responses of the car body, load reduction factor and overturning factor. For example, the maximum lateral displacement responses of the car body of the first trailer with and without cross-wind forces are 32.10 and 1.60 mm, respectively. The maximum vertical displacement responses of the car body of the first trailer with and without cross-wind forces are 6.60 and 3.29 mm, respectively. The maximum wheel load reduction factors of the first trailer with and without cross-wind forces are 0.43 and 0.22, respectively. The maximum overturning factors of the first trailer with and without cross-wind forces are 0.28 and 0.08, respectively. The cross-wind affects the derailment factor and lateral Sperling factor of the moving train to a certain extent. However, the lateral and vertical displacement responses of rails with the crnss-wind are almost the same as those without the cross-wind. The method presented and the corresponding computer program can be used to calculate the interaction between trains and track in cross-wind.展开更多
The modal characteristics of the transverse vibration of an axially moving roller chain coupled with lumped mass were analyzed.The chain system was modeled by using the multi-body dynamics theory and the governing equ...The modal characteristics of the transverse vibration of an axially moving roller chain coupled with lumped mass were analyzed.The chain system was modeled by using the multi-body dynamics theory and the governing equations were derived by means of Lagrange's equations.The effects of the parameters,such as the axially moving velocity of the chain,the tension force,the weight of lumped mass and its time-variable assign position in chain span,on the modal characteristics of transverse vibration for roller chain were investigated.The numerical examples were given.It is found that the natural frequencies and the corresponding mode shapes of the transverse vibration for roller chain coupled with lumped mass change significantly when the variations of above parameters are considered.With the movement of the chain strand,the natural frequencies present a fluctuating phenomenon,which is different from the uniform chain.The higher the order of mode is,the greater the fluctuating magnitude and frequency are.展开更多
This work deals with super-harmonic responses and the stabilities of a gear transmission system of a high-speed train under the stick-slip oscillation of the wheel-set.The dynamic model of the system is developed with...This work deals with super-harmonic responses and the stabilities of a gear transmission system of a high-speed train under the stick-slip oscillation of the wheel-set.The dynamic model of the system is developed with consideration on the factors including the time-varying system stiffness,the transmission error,the tooth backlash and the self-excited excitation of the wheel-set.The frequency-response equation of the system at super-harmonic resonance is obtained by the multiple scales method,and the stabilities of the system are analyzed using the perturbation theory.Complex nonlinear behaviors of the system including multi-valued solutions,jump phenomenon,hardening stiffness are found.The effects of the equivalent damping and the loads of the system under the stick-slip oscillation are analyzed.It shows that the change of the load can obviously influence the resonance frequency of the system and have little effect on the steady-state response amplitude of the system.The damping of the system has a negative effect,opposite to the load.The synthetic damping of the system composed of meshing damping and equivalent damping may be less than zero when the wheel-set has a large slippage,and the system loses its stability owing to the Hopf bifurcation.Analytical results are validated by numerical simulations.展开更多
In order to improve the screening efficiency of vibrating screen and make vibration process smooth,a new type of magnetorheological (MR) damper was proposed. The signals of displacement in the vibration process during...In order to improve the screening efficiency of vibrating screen and make vibration process smooth,a new type of magnetorheological (MR) damper was proposed. The signals of displacement in the vibration process during the test were collected. The trispectrum model of autoregressive (AR) time series was built and the correlation dimension was used to quantify the fractal characteristics during the vibration process. The result shows that,in different working conditions,trispectrum slices are applied to obtaining the information of non-Gaussian,nonlinear amplitude?frequency characteristics of the signal. Besides,there is correlation between the correlation dimension of vibration signal and trispectrum slices,which is very important to select the optimum working parameters of the MR damper and vibrating screen. And in the experimental conditions,it is found that when the working current of MR damper is 2 A and the rotation speed of vibration motor is 800 r/min,the vibration screen reaches its maximum screening efficiency.展开更多
A reduced-order dynamic model for an unbalanced rotor system is developed, taking the coupling between torsional and lateral vibrations into account. It is assumed that a shaft is regarded as a continuous viscoelastic...A reduced-order dynamic model for an unbalanced rotor system is developed, taking the coupling between torsional and lateral vibrations into account. It is assumed that a shaft is regarded as a continuous viscoelastic shaft with unbalanced and small deformation properties. The equations of motion for the torsional and lateral vibrations are derived using Lagrange's approach with the frequency-dependent shape function. The rotor torsional vibration is coupled with the lateral vibrations by unbalance elements in a way of excitations. Simulation and experiment results show clearly that the torsional vibration has strong impact on the rotor lateral vibrations, and it causes subharmonic and superharmonic excitations through unbalance elements, which leads to the superharmonic resonances in the lateral vibrations. This model with low-order and high accuracy is suitable for rotor dynamic analysis in real time simulation as well as for active vibration control syntheses.展开更多
The root mean square(RMS) difference of time-lapse seismic amplitudes is routinely used to identify the substituted fluid type in a reservoir during oil field production and recovery. By a time-lapse seismic method, w...The root mean square(RMS) difference of time-lapse seismic amplitudes is routinely used to identify the substituted fluid type in a reservoir during oil field production and recovery. By a time-lapse seismic method, we study the effects of fluid substitution in a physical model, which is an analogy of the three-dimensional inhomogeneous reservoir. For a weak inhomogeneous medium, gas/oil substitution results in positive anomalies in the reservoir layers, and negative anomalies below the bottom of the reservoir layers; while water/oil substitution causes only weak variations in the reservoir layers, but positive anomalies below the bottom of the reservoir layers. For the strong inhomogeneous medium, no matter what kind of fluid substitution(gas/oil or water/oil), there are significant anomalies in seismic amplitude difference attributes both in and below the reservoir layers. Therefore, for weak inhomogeneous media, such as tight sandstone or thin interbedded layers, the RMS amplitude difference attributes can be used to monitor fluid changes and predict the drilling direction; for inhomogeneous medium with karst carves or fractures, it is difficult to accurately determine the distribution of fluids with the RMS amplitude difference attributes.展开更多
A model of vibrating device coupling two pendulums (VDP) which is highly nonlinear was put forward to conduct vibration analysis. Based on energy analysis, dynamic equations with cubic nonlinearities were established ...A model of vibrating device coupling two pendulums (VDP) which is highly nonlinear was put forward to conduct vibration analysis. Based on energy analysis, dynamic equations with cubic nonlinearities were established using Lagrange's equation. In order to obtain approximate solution, multiple time scales method, one of perturbation technique, was applied. Cases of non-resonant and 1:1:2:2 internal resonant were discussed. In the non-resonant case, the validity of multiple time scales method is confirmed, comparing numerical results derived from fourth order Runge-Kutta method with analytical results derived from first order approximate expression. In the 1:1:2:2 internal resonant case, modal amplitudes of Aa1 and Ab2 increase, respectively, from 0.38 to 0.63 and from 0.19 to 0.32, while the corresponding frequencies have an increase of almost 1.6 times with changes of initial conditions, indicating the existence of typical nonlinear phenomenon. In addition, the chaotic motion is found under this condition.展开更多
The objective of this work was to study the vibration transmissibility characteristics of the undamped and damped smart spring systems. The frequency response characteristics of them were analyzed by using the equival...The objective of this work was to study the vibration transmissibility characteristics of the undamped and damped smart spring systems. The frequency response characteristics of them were analyzed by using the equivalent linearization technique, and the possible types of the system motion were distinguished by using the starting and ending frequencies. The influences of system parameters on the vibration transmissibility characteristics were discussed. The following conclusions may be drawn from the analysis results. The undamped smart spring system may simultaneously have one starting frequency and one ending frequency or only have one starting frequency, and the damped system may simultaneously have two starting frequencies and one ending frequency. There is an optimal control parameter to make the peak value of the vibration transmissibility curve of the system be minimum. When the mass ratio is far away from the stiffness ratio, the vibration transmissibility is small. The effect of the damping ratio on the system vibration transmissibility is significant while the control parameter is less than its optimal value. But the influence of the relative damping ratio on the vibration transmissibility is small.展开更多
In order to investigate the forced transverse vibration of rolls under distributed draught pressure and moment of bending roll force, the forced transverse vibration model of rolls for four-high rolling mill was estab...In order to investigate the forced transverse vibration of rolls under distributed draught pressure and moment of bending roll force, the forced transverse vibration model of rolls for four-high rolling mill was established. The work roll and backup roll were considered as elastic continuous bodies that were joined by a Winkler elastic layer. According to Euler-Bemoulli beam theory, the forced transverse vibration of rolls was analyzed based on modal superposition method. The forced vibration equations were established when the draught pressure and moment of bending roll force were imposed on the rolls respectively. Numerical modeling was made on 2 030 mm cold tandem rolling mill of Baoshan Iron and Steel Company. Simulation results show that when the work roll is only subjected to different forms of draught pressures, the vibration curves of work roll and backup roll are quadratic curves with amplitudes of 0.3 mm and 45 μm, respectively. When only the moments of bending roll force are imposed on the work roll and backup roll, the vibration curves of work roll and backup roll are quadratic curves, and the amplitudes are 5.0 and 1.6 μm, respectively. The influence of moment of bending roll force on the vibration of work roll is related with the bending roll force.展开更多
基金Supported by the National Key Research and Development Program of China(2022YFA1404602)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB0580000)+3 种基金the National Natural Science Foundation of China(U23B2045,62305362)the Program of Shanghai Academic/Technology Research Leader(22XD1424400)the Fund of SITP Innovation Foundation(CX-461 and CX-522)Special Project to Seize the Commanding Heights of Science and Technology of Chinese Academy of Sciences,subtopic(GJ0090406-6).
文摘The polarization properties of light are widely applied in imaging,communications,materials analy⁃sis,and life sciences.Various methods have been developed that can measure the polarization information of a target.However,conventional polarization detection systems are often bulky and complex,limiting their poten⁃tial for broader applications.To address the challenges of miniaturization,integrated polarization detectors have been extensively explored in recent years,achieving significant advancements in performance and functionality.In this review,we focus mainly on integrated polarization detectors with innovative features,including infinitely high polarization discrimination,ultrahigh sensitivity to polarization state change,full Stokes parameters measure⁃ment,and simultaneous perception of polarization and other key properties of light.Lastly,we discuss the oppor⁃tunities and challenges for the future development of integrated polarization photodetectors.
文摘High-static-low-dynamic stiffness (HSLDS) vibration isolators have been demonstrated to be an effective means of attenuating low-frequency vibrations, and may be utilized for ship shafting applications to mitigate torsional vibration. This paper presents the construction of a highly compact HSLDS torsional vibration isolator by connecting positive and negative stiffness components in paral lel. Based on mechanical model analysis, the restoring torque of negative stiffness components is de rived from their springs and connecting rods, while that of positive stiffness components is obtained through their circular section flexible rods. The quasizero stiffness characteristics of the HSLDS iso lator are achieved through a combination of static structural simulation and experimental test. The tor sional vibration isolation performance is assessed by means of numerical simulation and theory analy sis. Finally, the frequency-sweep vibration test is conducted. The test results indicate that the HSLDS torsional vibration isolator exhibits superior low-frequency isolation performance compared to its linear counterpart, rendering it a promising solution for mitigating low-frequency torsional vi bration in ship shafting.
基金Project(10033135-2009-11) supported by the Korean Ministry of Knowledge Economy (MKE) through HNK. Co,Ltd.
文摘For the purpose of analyzing the torsional vibration caused by the gravitational unbalance torque arisen in a spindle system when it is machining heavy work piece,a 10-DOF lumped parameter model was made for the machine tool spindle system with geared transmission.By using the elementary method and Runge-Kutta method in Matlab,the eigenvalue problem was solved and the pure torsional vibration responses were obtained and examined.The results show that the spindle system cannot operate in the desired constant rotating speed as far as the gravitational unbalance torque is engaged,so it may cause bad effect on machining accuracy.And the torsional vibration increases infinitely near the resonant frequencies,so the spindle system cannot operate normally during these spindle speed ranges.
基金Project(50678064) supported by the National Natural Science Foundation of China
文摘The effects of concrete's time-variant elastic modulus,casting structural components,assembling temporary shoring framework system,and shock by operating construction equipment on dynamic behavior of the reinforced concrete frame structure during construction were investigated. The dynamic tests of an eight-storey reinforced concrete frame structure during full-scaled stages of the sixth storey construction cycle were carried out by ambient vibration. Natural frequencies,corresponding mode shapes and damping ratio were determined by power spectrum processing the tested signal data in frequency domain. The changes of frequencies,mode shapes and damping ratios at different construction stages were given. The results show that natural frequencies and modal damping ratios reach the maximum at stage of casting fresh concrete,especially for higher modes. Modal damping ratios at each construction stage are less than 5% of those during usage.
文摘A new hybrid piezoelectric ultrasonic motor, which consists of one rotor and two stators, was proposed in this paper. In order to match the resonance frequencies of longitudinal vibration and torsional vibration excited in the stators, a symmetrical structure was adopted in design of the motor. A so-called mass matching method, namely adding two rings to the outside circumference of the two stators respectively, was used to adjust the resonance frequencies of these two vibrations. A finite element model was developed using ANSYS software for the purpose of analyzing the resonance frequencies of longitudinal vibration and torsional vibration as well as the function of the adjusting rings. The results show that the resonance frequency of torsional vibration varies with the position of the ring, but the resonance frequency of longitudinal vibration changes little. By means of adjusting the mass and the position of the rings, the first order resonance frequency of longitudinal vibration is coincided with that of torsional vibration and the value is 20.75kHz. An experimental prototype motor was fabricated according to the analytical results and its performance is in agreement with the theoretical predictions. The speed of motor reaches the maximum 92r/min at the working frequency 19.0kHz.
基金Projects(60404003,11202230)supported by the National Natural Science Foundation of China
文摘The self-excited vibration problems of maglev vehicle-bridge interaction system were addressed, which greatly degrades the stability of the levitation control, decreases the ride comfort, and restricts the cost of the whole system. Firstly, the coupled model containing the quintessential parts was built, and the mechanism of self-excited vibration was explained in terms of energy transmission from levitation system to bridge. Then, the influences of the parameters of the widely used integral-type proportion and derivation(PD) controller and the delay of signals on the stability of the interaction system were analyzed. The result shows that the integral-type PD control is a nonoptimal approach to solve the self-excited vibration completely. Furthermore, the differential-type PD controller can guarantee the passivity of levitation system at full band. However, the differentiation of levitation gap should be filtered by a low-pass filter due to noise of gap differentiation. The analysis indicates that a well tuned low-pass filter can still keep the coupled system stable.
基金Project(51221462) supported by the National Natural Science Foundation of ChinaProject(20120095110001) supported by the Ph D Programs Foundation of Ministry of Education of China
文摘Demand for large vibrating screen is huge in the mineral processing industry. As bending and random vibration are not considered in a traditional design method for beam structures of a large vibrating screen, fatigue damage occurs frequently to affect the screening performance. This work aims to conduct a systematic mechanics analysis of the beam structures and improve the design method. Total motion of a beam structure in screening process can be decomposed into the traditional followed rigid translation(FRT), bending vibration(BV) and axial linear-distributed random rigid translation(ALRRT) excited by the side-plates. When treated as a generalized single-degree-of-freedom(SDOF) elastic system analytically, the BV can be solved by the Rayleigh's method. Stochastic analysis for random process is conducted for the detailed ALRRT calculation. Expressions for the mechanics property, namely, the shearing force and bending-moment with respect to BV and ALRRT, are derived, respectively. Experimental and numerical investigations demonstrate that the largest BV exists at the beam center and can be nearly ignored in comparison with the FRT during a simplified engineering design. With the BV and FRT considered, the mechanics property accords well with the practical situation with the maximum error of 6.33%, which is less than that obtained by traditional method.
基金Project(2008AA11A116)supported by the National High Technology Research and Development Program of ChinaProject(9140A2011QT4801)supported by advanced research of the Weapon Equipment Key Fund Program,ChinaProject(61075002)supported by the Independent Subject of State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body of Hunan University,China
文摘In order to solve fretting instability problem of gear shaft shoulder due to torsional vibration in mechanical system, the mathematical model of fretting instability vibration of gear shaft shoulder was established by adopting the method of combining kinematics and tribology, and the numerical analysis was applied to the fretting instability mechanism of gear shaft shoulder by introducing the friction instability damping ratio. The numerical results show that the main factors causing the unstable and vibrating gear shaft shoulder are the large tightening torque and too large static friction coefficient. The reasonable values of the static friction coefficient, the amount of interference and tightening torque can effectively mitigate the fretting instability phenomenon of gear shaft shoulder. The experimental results verify that damping plays a significant role in eliminating the vibration of gear shaft control system.
基金Project (2007CB714706) supported by the Major State Basic Research and Development Program of ChinaProject (50678176) supported by the National Natural Science Foundation of ChinaProject (NCET-07-0866) supported by the New Century Excellent Talents in University
文摘By taking cross-wind forces acting on trains into consideration, a dynamic analysis method of the cross-wind and high-speed train and slab track system was proposed on the basis of the analysis theory of spatial vibration of high-speed train and slab track system. The corresponding computer program was written by FORTRAN language. The dynamic responses of the high-speed train and slab track under cross-wind action were calculated. Meanwhile, the effects of the cross-wind on the dynamic responses of the system were also analyzed. The results show that the cross-wind has a significant influence on the lateral and vertical displacement responses of the car body, load reduction factor and overturning factor. For example, the maximum lateral displacement responses of the car body of the first trailer with and without cross-wind forces are 32.10 and 1.60 mm, respectively. The maximum vertical displacement responses of the car body of the first trailer with and without cross-wind forces are 6.60 and 3.29 mm, respectively. The maximum wheel load reduction factors of the first trailer with and without cross-wind forces are 0.43 and 0.22, respectively. The maximum overturning factors of the first trailer with and without cross-wind forces are 0.28 and 0.08, respectively. The cross-wind affects the derailment factor and lateral Sperling factor of the moving train to a certain extent. However, the lateral and vertical displacement responses of rails with the crnss-wind are almost the same as those without the cross-wind. The method presented and the corresponding computer program can be used to calculate the interaction between trains and track in cross-wind.
基金Project(50605060) supported by the National Natural Science Foundation of ChinaProject(20050056058) supported by the Research Fund for the Doctoral Program of Higher Education of ChinaProject(06YFJMJC03300) supported by the National Science Foundation of Tianjin,China
文摘The modal characteristics of the transverse vibration of an axially moving roller chain coupled with lumped mass were analyzed.The chain system was modeled by using the multi-body dynamics theory and the governing equations were derived by means of Lagrange's equations.The effects of the parameters,such as the axially moving velocity of the chain,the tension force,the weight of lumped mass and its time-variable assign position in chain span,on the modal characteristics of transverse vibration for roller chain were investigated.The numerical examples were given.It is found that the natural frequencies and the corresponding mode shapes of the transverse vibration for roller chain coupled with lumped mass change significantly when the variations of above parameters are considered.With the movement of the chain strand,the natural frequencies present a fluctuating phenomenon,which is different from the uniform chain.The higher the order of mode is,the greater the fluctuating magnitude and frequency are.
基金Project(U1234208)supported by the National Natural Science Foundation of ChinaProject(2016YFB1200401)supported by the National Key Research and Development Program of China
文摘This work deals with super-harmonic responses and the stabilities of a gear transmission system of a high-speed train under the stick-slip oscillation of the wheel-set.The dynamic model of the system is developed with consideration on the factors including the time-varying system stiffness,the transmission error,the tooth backlash and the self-excited excitation of the wheel-set.The frequency-response equation of the system at super-harmonic resonance is obtained by the multiple scales method,and the stabilities of the system are analyzed using the perturbation theory.Complex nonlinear behaviors of the system including multi-valued solutions,jump phenomenon,hardening stiffness are found.The effects of the equivalent damping and the loads of the system under the stick-slip oscillation are analyzed.It shows that the change of the load can obviously influence the resonance frequency of the system and have little effect on the steady-state response amplitude of the system.The damping of the system has a negative effect,opposite to the load.The synthetic damping of the system composed of meshing damping and equivalent damping may be less than zero when the wheel-set has a large slippage,and the system loses its stability owing to the Hopf bifurcation.Analytical results are validated by numerical simulations.
基金Project(50975098) supported by the National Natural Science Foundation of ChinaProject(2008HZ0002-1) supported by the Major Scientific and Technological Program of Fujian Province,China
文摘In order to improve the screening efficiency of vibrating screen and make vibration process smooth,a new type of magnetorheological (MR) damper was proposed. The signals of displacement in the vibration process during the test were collected. The trispectrum model of autoregressive (AR) time series was built and the correlation dimension was used to quantify the fractal characteristics during the vibration process. The result shows that,in different working conditions,trispectrum slices are applied to obtaining the information of non-Gaussian,nonlinear amplitude?frequency characteristics of the signal. Besides,there is correlation between the correlation dimension of vibration signal and trispectrum slices,which is very important to select the optimum working parameters of the MR damper and vibrating screen. And in the experimental conditions,it is found that when the working current of MR damper is 2 A and the rotation speed of vibration motor is 800 r/min,the vibration screen reaches its maximum screening efficiency.
基金Project(51105017)supported by National Natural Science Foundation of ChinaProject(2011BAG09B00)supported by the National Science and Technology Support Program,ChinaProject(2010DFB80020)supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China
文摘A reduced-order dynamic model for an unbalanced rotor system is developed, taking the coupling between torsional and lateral vibrations into account. It is assumed that a shaft is regarded as a continuous viscoelastic shaft with unbalanced and small deformation properties. The equations of motion for the torsional and lateral vibrations are derived using Lagrange's approach with the frequency-dependent shape function. The rotor torsional vibration is coupled with the lateral vibrations by unbalance elements in a way of excitations. Simulation and experiment results show clearly that the torsional vibration has strong impact on the rotor lateral vibrations, and it causes subharmonic and superharmonic excitations through unbalance elements, which leads to the superharmonic resonances in the lateral vibrations. This model with low-order and high accuracy is suitable for rotor dynamic analysis in real time simulation as well as for active vibration control syntheses.
基金Project(2013CB228600)supported by the National Basic Research Program of China
文摘The root mean square(RMS) difference of time-lapse seismic amplitudes is routinely used to identify the substituted fluid type in a reservoir during oil field production and recovery. By a time-lapse seismic method, we study the effects of fluid substitution in a physical model, which is an analogy of the three-dimensional inhomogeneous reservoir. For a weak inhomogeneous medium, gas/oil substitution results in positive anomalies in the reservoir layers, and negative anomalies below the bottom of the reservoir layers; while water/oil substitution causes only weak variations in the reservoir layers, but positive anomalies below the bottom of the reservoir layers. For the strong inhomogeneous medium, no matter what kind of fluid substitution(gas/oil or water/oil), there are significant anomalies in seismic amplitude difference attributes both in and below the reservoir layers. Therefore, for weak inhomogeneous media, such as tight sandstone or thin interbedded layers, the RMS amplitude difference attributes can be used to monitor fluid changes and predict the drilling direction; for inhomogeneous medium with karst carves or fractures, it is difficult to accurately determine the distribution of fluids with the RMS amplitude difference attributes.
基金Projects(50574091, 50774084) supported by the National Natural Science Foundation of ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions+1 种基金Project(CXLX12_0949) supported by Research and Innovation Project for College Graduates of Jiangsu Province, ChinaProject(2013DXS03) supported by the Fundamental Research Funds for the Central Universities, China
文摘A model of vibrating device coupling two pendulums (VDP) which is highly nonlinear was put forward to conduct vibration analysis. Based on energy analysis, dynamic equations with cubic nonlinearities were established using Lagrange's equation. In order to obtain approximate solution, multiple time scales method, one of perturbation technique, was applied. Cases of non-resonant and 1:1:2:2 internal resonant were discussed. In the non-resonant case, the validity of multiple time scales method is confirmed, comparing numerical results derived from fourth order Runge-Kutta method with analytical results derived from first order approximate expression. In the 1:1:2:2 internal resonant case, modal amplitudes of Aa1 and Ab2 increase, respectively, from 0.38 to 0.63 and from 0.19 to 0.32, while the corresponding frequencies have an increase of almost 1.6 times with changes of initial conditions, indicating the existence of typical nonlinear phenomenon. In addition, the chaotic motion is found under this condition.
基金Project(51375226)supported by the National Natural Science Foundation of ChinaProject(20113218110017)supported by the Doctoral Program Foundation of Institutions of Higher Education of China+2 种基金Project(PAPD)supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,ChinaProject(CXZZ11_0199)supported by the Funding of Jiangsu Innovation Program for Graduate Education,ChinaProject(2014)supported by the the Fundamental Research Funds for the Central Universities,China
文摘The objective of this work was to study the vibration transmissibility characteristics of the undamped and damped smart spring systems. The frequency response characteristics of them were analyzed by using the equivalent linearization technique, and the possible types of the system motion were distinguished by using the starting and ending frequencies. The influences of system parameters on the vibration transmissibility characteristics were discussed. The following conclusions may be drawn from the analysis results. The undamped smart spring system may simultaneously have one starting frequency and one ending frequency or only have one starting frequency, and the damped system may simultaneously have two starting frequencies and one ending frequency. There is an optimal control parameter to make the peak value of the vibration transmissibility curve of the system be minimum. When the mass ratio is far away from the stiffness ratio, the vibration transmissibility is small. The effect of the damping ratio on the system vibration transmissibility is significant while the control parameter is less than its optimal value. But the influence of the relative damping ratio on the vibration transmissibility is small.
基金Project(50875231) supported by the National Natural Science Foundation of ChinaProject(E2006001038) supported by Great Natural Science Foundation of Hebei Province, China
文摘In order to investigate the forced transverse vibration of rolls under distributed draught pressure and moment of bending roll force, the forced transverse vibration model of rolls for four-high rolling mill was established. The work roll and backup roll were considered as elastic continuous bodies that were joined by a Winkler elastic layer. According to Euler-Bemoulli beam theory, the forced transverse vibration of rolls was analyzed based on modal superposition method. The forced vibration equations were established when the draught pressure and moment of bending roll force were imposed on the rolls respectively. Numerical modeling was made on 2 030 mm cold tandem rolling mill of Baoshan Iron and Steel Company. Simulation results show that when the work roll is only subjected to different forms of draught pressures, the vibration curves of work roll and backup roll are quadratic curves with amplitudes of 0.3 mm and 45 μm, respectively. When only the moments of bending roll force are imposed on the work roll and backup roll, the vibration curves of work roll and backup roll are quadratic curves, and the amplitudes are 5.0 and 1.6 μm, respectively. The influence of moment of bending roll force on the vibration of work roll is related with the bending roll force.