期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
基于多粒度时间卷积网络的超短期风功率预测 被引量:4
1
作者 江国乾 徐向东 +3 位作者 白佳荣 何群 谢平 单伟 《太阳能学报》 EI CAS CSCD 北大核心 2024年第5期104-111,共8页
针对传统风功率预测方法通常基于固定时间粒进行研究,但该类方法往往忽略了其他时间粒度对风功率的影响的问题,提出一种基于多粒度时间卷积网络(MGTCN)的超短期风功率预测方法,使用时间卷积网络来挖掘多粒度视角下的风力机数据特征,并... 针对传统风功率预测方法通常基于固定时间粒进行研究,但该类方法往往忽略了其他时间粒度对风功率的影响的问题,提出一种基于多粒度时间卷积网络(MGTCN)的超短期风功率预测方法,使用时间卷积网络来挖掘多粒度视角下的风力机数据特征,并设计多粒度特征融合模块来增强模型的鲁棒性,提高风功率预测精度。首先,利用随机森林算法(RF)得到与输出功率相关性较强的部分特征数据;然后,对筛选后的特征数据进行多粒度划分,通过时间卷积网络(TCN)提取各个粒度的独立特征。最后,使用挤压激励网络(SENet)对不同粒度特征进行自适应加权融合,得到最终预测值。采用中国某风场数据进行算例分析,结果表明相较于其他方法,所提方法在24步预测任务和6步预测任务上取得了最佳的预测性能,具有较高的准确性和稳定性。在24步预测任务上归一化均方根误差、归一化平均绝对值误差和决定系数指标分别为0.152、0.108和0.7214,在6步预测任务上各指标分别为0.1027,0.0683和0.8717。 展开更多
关键词 风功率 预测 随机森林 多粒度计算 时间卷积网络 挤压激励网络
在线阅读 下载PDF
基于注意力机制和卷积神经网络的网络安全感知预测
2
作者 张飞 《佳木斯大学学报(自然科学版)》 CAS 2024年第9期129-132,共4页
为了提高网络安全防御效果,注意力机制和卷积神经网络成为研究的热点,但传统方案可能带来模型过拟合、计算和内存开销较大且缺乏空间上下文关系建模的问题。针对上述问题,研究基于注意力机制和卷积神经网络的网络安全感知预测方法,通过... 为了提高网络安全防御效果,注意力机制和卷积神经网络成为研究的热点,但传统方案可能带来模型过拟合、计算和内存开销较大且缺乏空间上下文关系建模的问题。针对上述问题,研究基于注意力机制和卷积神经网络的网络安全感知预测方法,通过加深网络结构、添加dropout层、数据归一化、数据融合四个步骤的改进,最终得到改进挤压与激励网络方案。实验结果表明,该方案收敛速度较快,在65轮迭代后收敛,最终准确率收敛于97.3%。在融合五条数据的情况下,准确率达到最高为97.5%,说明研究建立的网络安全感知预测模型具有较高的准确率以及强大的泛化能力。 展开更多
关键词 注意力机制 卷积神经网络 网络安全感知预测 挤压激励网络
在线阅读 下载PDF
基于改进深度残差网络的轴承故障诊断方法 被引量:31
3
作者 田科位 董绍江 +4 位作者 姜保军 裴雪武 汤宝平 胡小林 赵兴新 《振动与冲击》 EI CSCD 北大核心 2021年第20期247-254,共8页
针对滚动轴承在噪声环境中干扰大、工况复杂多变时诊断困难的问题,提出了一种改进深度残差网络的轴承故障诊断方法。对滚动轴承振动信号预处理,得到数据样本,分为训练集和测试集;将基于注意力机制的挤压与激励网络(squeeze-and-excitati... 针对滚动轴承在噪声环境中干扰大、工况复杂多变时诊断困难的问题,提出了一种改进深度残差网络的轴承故障诊断方法。对滚动轴承振动信号预处理,得到数据样本,分为训练集和测试集;将基于注意力机制的挤压与激励网络(squeeze-and-excitation networks,SENet)结构引入到残差神经网络残差块之中建立特征提取通道之间的联系,得到改进深度残差网络模型;再将标签化的训练集数据样本输入改进的诊断模型中进行训练;将训练好的诊断模型应用于测试集,输出每种故障的识别结果。在训练过程中,为了抑制过拟合,对原始训练样本进行加噪处理;同时引入了激活函数LReLU和Dropout技巧来提高模型的抗干扰能力。为了验证该模型的诊断性能,选用实验数据进行验证,结果表明该方法在载荷变化以及信号受到严重噪声污染时,依然拥有良好的故障诊断能力。 展开更多
关键词 滚动轴承 轴承故障诊断 深度残差网络 挤压激励网络
在线阅读 下载PDF
融合残差SENet的毫米波大规模MIMO信道估计 被引量:1
4
作者 刘庆利 杨国强 张振亚 《电讯技术》 北大核心 2024年第4期512-519,共8页
在户外光线追踪场景下,针对毫米波大规模多输入多输出(Multiple-Input Multiple-Output,MIMO)系统受户外环境噪声干扰导致估计精度低的问题,提出了一种融合残差挤压激励网络(Squeeze-and-Excitation Network,SENet)的条件生成对抗网络... 在户外光线追踪场景下,针对毫米波大规模多输入多输出(Multiple-Input Multiple-Output,MIMO)系统受户外环境噪声干扰导致估计精度低的问题,提出了一种融合残差挤压激励网络(Squeeze-and-Excitation Network,SENet)的条件生成对抗网络的信道估计方法。该方法采用条件生成对抗网络将低分辨率接收信号重建为高分辨率的原始信号完成信道估计,同时在生成器网络中引入SENet网络模块来抑制户外场景下显著性噪声干扰,提高估计精度;最后将残差网络中的残差块添加到SENet的放缩操作后,提高条件生成对抗网络的收敛速度。仿真结果表明,相较于正交匹配追踪算法、卷积神经网络、去噪卷积神经网络和条件生成对抗网络算法,所提方法在户外噪声环境下估计精度平均提高了约2.2 dB,且在高噪声强度下估计精度的提高更为显著。 展开更多
关键词 毫米波大规模MIMO 信道估计 条件生成对抗网络(CGAN) 残差挤压激励网络(SENet)
在线阅读 下载PDF
基于全局注意力机制的Robust-PointPillars三维目标检测
5
作者 王盈丰 吴俭 +2 位作者 宋佳 柯涛 付伟 《舰船电子对抗》 2024年第2期86-92,共7页
提出了一种基于全局注意力机制的Robust-PointPillars三维目标检测方法,在智能驾驶的应用中,提高了目标检测的精度和鲁棒性。PointPillars等神经网络通过使用点云柱表示点云,具有实现三维目标检测的潜力。首先介绍了空间和通道双重注意... 提出了一种基于全局注意力机制的Robust-PointPillars三维目标检测方法,在智能驾驶的应用中,提高了目标检测的精度和鲁棒性。PointPillars等神经网络通过使用点云柱表示点云,具有实现三维目标检测的潜力。首先介绍了空间和通道双重注意力模块,以增强有学习价值的点云特征,解决了PointPillars缺乏点云柱内部学习机制和特征提取不足的问题;挤压与激励网络(SENet)模块的引入,使PointPillars对特征信息的学习理解能力得到进一步提高;最终,对受到干扰或缺失的传感器信号进行抑制,并利用全局注意力算法来提高鲁棒性。基于KITTI数据集上的目标检测结果,本文算法具有良好的目标检测精度和鲁棒性。 展开更多
关键词 三维目标检测 PointPillars 全局注意力机制 挤压激励网络模块
在线阅读 下载PDF
结合改进ResNet与迁移学习的风力机滚动轴承故障诊断方法 被引量:11
6
作者 雷春丽 薛林林 +2 位作者 焦孟萱 张护强 史佳硕 《太阳能学报》 EI CAS CSCD 北大核心 2023年第6期436-444,共9页
为解决实际应用中风力机滚动轴承故障训练样本严重不足的问题,提出一种基于改进残差神经网络与迁移学习的小样本滚动轴承故障诊断模型。首先,该模型将挤压与激励网络嵌入到一维残差神经网络中,增加了模型的特征提取能力;其次,使用源域... 为解决实际应用中风力机滚动轴承故障训练样本严重不足的问题,提出一种基于改进残差神经网络与迁移学习的小样本滚动轴承故障诊断模型。首先,该模型将挤压与激励网络嵌入到一维残差神经网络中,增加了模型的特征提取能力;其次,使用源域数据对所搭建改进残差神经网络模型进行训练,确定结构和参数,并使用L2正则化和Dropout机制抑制过拟合;然后,引入迁移学习,冻结使用源域数据训练好的部分模型参数,使用少量目标域数据对模型的全连接层参数进行微调;最后,对不同故障的样本进行分类。该方法在凯斯西储大学轴承数据集和本实验室轴承数据集上进行实验验证,实验结果表明:在不同实验条件下,所提方法与其他方法的计算结果进行比较,其均有更高的故障诊断准确度和更强的泛化能力。 展开更多
关键词 风力机 滚动轴承 故障诊断 迁移学习 挤压激励网络 小样本
在线阅读 下载PDF
基于CNN的飞机升降舵液压系统故障诊断 被引量:1
7
作者 张鹏 李广道 《中国民航大学学报》 CAS 2023年第1期35-40,52,共7页
针对民机液压系统故障诊断对专家经验的依赖和深层网络诊断模型退化的问题,提出改进的一维卷积神经网络算法。首先,将仿真故障数据直接输入一维卷积神经网络,再对卷积层使用残差块机制来提高信息的利用率,引入挤压与激励网络对卷积层特... 针对民机液压系统故障诊断对专家经验的依赖和深层网络诊断模型退化的问题,提出改进的一维卷积神经网络算法。首先,将仿真故障数据直接输入一维卷积神经网络,再对卷积层使用残差块机制来提高信息的利用率,引入挤压与激励网络对卷积层特征向量进行加权表示,从而减少无效信息,达到抗干扰的效果;其次,使用一维全局均值池化层处理末层信息,降低神经网络参数的数量和诊断时间;最后,为了验证所提方法的有效性和实用性,通过实验室仿真平台得到的飞机升降舵液压系统故障数据对该方法进行测试,同时与主流算法进行对比。实验结果表明:本文所提方法测试集准确率高达99.3%,相比其他网络在液压系统故障诊断方面准确率和泛化性有明显的提升,在加入20%噪声环境下本文网络相比传统卷积网络诊断准确率提升4.4%,且具有较强的实用性。 展开更多
关键词 故障诊断 民机液压系统 卷积神经网络 残差结构 全局均值池化 挤压激励网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部