期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
多路径特征融合的YOLOv8航拍图像检测算法
1
作者 王灵超 沈学利 +1 位作者 艾强 闫海龙 《电子测量技术》 北大核心 2025年第17期160-168,共9页
针对无人机航拍图像中目标密集、背景复杂导致小目标检测精度较低的问题,提出了一种改进的航拍目标检测算法(MF-YOLO)。首先,增强YOLOv8的多路径特征融合能力,整合不同层次特征以保留浅层细节,提高小目标检测精度;其次,采用EMA注意力机... 针对无人机航拍图像中目标密集、背景复杂导致小目标检测精度较低的问题,提出了一种改进的航拍目标检测算法(MF-YOLO)。首先,增强YOLOv8的多路径特征融合能力,整合不同层次特征以保留浅层细节,提高小目标检测精度;其次,采用EMA注意力机制,提高目标区域识别率和目标框定位精度,有效区分目标与背景区域;然后,提出密集注意层(DAL),通过聚焦密集目标区域和抑制无关特征,提升算法对密集区域的特征提取能力;接着,设计挤压激励检测头,结合SE注意力机制抑制冗余特征,进一步提升小目标检测精度;最后,构建视频数据集并设计目标检测系统,以可视化算法检测效果。在VisDrone2019数据集上的实验验证表明,MF-YOLO的mAP0.5达到30.3%,较基线算法YOLOv8n提升3.4%。结果显示,该算法显著提升了无人机图像的目标检测性能,具有广泛的应用前景。 展开更多
关键词 无人机检测 多路径特征融合 密集注意力 挤压激励检测头 YOLOv8n
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部