期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进YOLOv8n的手机屏幕瑕疵检测算法:PGS-YOLO
1
作者
周思瑜
徐慧英
+4 位作者
朱信忠
黄晓
盛轲
曹雨淇
陈晨
《计算机工程》
北大核心
2025年第5期326-339,共14页
手机屏幕作为人机交互的主窗口,已成为影响用户体验和终端整体性能的重要因素。因此,市场对解决手机屏幕瑕疵的需求日益增长。为满足这一需求,针对在手机屏幕瑕疵检测过程中存在检测精度低、小目标瑕疵漏检率高与检测速度慢的情况,提出...
手机屏幕作为人机交互的主窗口,已成为影响用户体验和终端整体性能的重要因素。因此,市场对解决手机屏幕瑕疵的需求日益增长。为满足这一需求,针对在手机屏幕瑕疵检测过程中存在检测精度低、小目标瑕疵漏检率高与检测速度慢的情况,提出一种以YOLOv8n作为基准模型的PGS-YOLO算法。PGS-YOLO通过增加一个专门的微小目标检测头,并结合SeaAttention注意力模块,有效提升对小目标的探测能力;将骨干网络和特征融合网络分别融入PConv与GhostNetV2轻量化模块,在保证精度的同时降低模型的参数量,提高瑕疵检测的速度与效率。实验结果表明,在北京大学手机屏幕表面瑕疵数据集中,相较于YOLOv8n,PGS-YOLO算法的mAP@0.5提升了2.5百分点,mAP@0.5∶0.95提升了2.2百分点,在手机屏幕瑕疵检测过程中不仅能对大片的瑕疵做到精准检测,还能对小瑕疵保持一定的准确度。此外,检测性能优于YOLOv5n、YOLOv8s等大部分YOLO系列算法。同时,参数量仅为2.0×10^(6),小于YOLOv8n,满足工业场景对手机屏幕瑕疵检测的需求。
展开更多
关键词
YOLOv8n模型
手机屏幕瑕疵检测
小目标检测
部分卷积
GhostNetV2轻量化模块
挤压增强轴向注意力
在线阅读
下载PDF
职称材料
题名
基于改进YOLOv8n的手机屏幕瑕疵检测算法:PGS-YOLO
1
作者
周思瑜
徐慧英
朱信忠
黄晓
盛轲
曹雨淇
陈晨
机构
浙江师范大学计算机科学与技术学院
浙江师范大学教育学院
出处
《计算机工程》
北大核心
2025年第5期326-339,共14页
基金
国家自然科学基金(61976196)
浙江省自然科学基金重点项目(LZ22F030003)
国家级大学生创新创业训练计划项目创新训练重点项目(202310345042)。
文摘
手机屏幕作为人机交互的主窗口,已成为影响用户体验和终端整体性能的重要因素。因此,市场对解决手机屏幕瑕疵的需求日益增长。为满足这一需求,针对在手机屏幕瑕疵检测过程中存在检测精度低、小目标瑕疵漏检率高与检测速度慢的情况,提出一种以YOLOv8n作为基准模型的PGS-YOLO算法。PGS-YOLO通过增加一个专门的微小目标检测头,并结合SeaAttention注意力模块,有效提升对小目标的探测能力;将骨干网络和特征融合网络分别融入PConv与GhostNetV2轻量化模块,在保证精度的同时降低模型的参数量,提高瑕疵检测的速度与效率。实验结果表明,在北京大学手机屏幕表面瑕疵数据集中,相较于YOLOv8n,PGS-YOLO算法的mAP@0.5提升了2.5百分点,mAP@0.5∶0.95提升了2.2百分点,在手机屏幕瑕疵检测过程中不仅能对大片的瑕疵做到精准检测,还能对小瑕疵保持一定的准确度。此外,检测性能优于YOLOv5n、YOLOv8s等大部分YOLO系列算法。同时,参数量仅为2.0×10^(6),小于YOLOv8n,满足工业场景对手机屏幕瑕疵检测的需求。
关键词
YOLOv8n模型
手机屏幕瑕疵检测
小目标检测
部分卷积
GhostNetV2轻量化模块
挤压增强轴向注意力
Keywords
YOLOv8n model
mobile phone screen defect detection
small target detection
partial convolution
GhostNetV2 lightweight module
squeeze enhances axial attention
分类号
TP181 [自动化与计算机技术—控制理论与控制工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于改进YOLOv8n的手机屏幕瑕疵检测算法:PGS-YOLO
周思瑜
徐慧英
朱信忠
黄晓
盛轲
曹雨淇
陈晨
《计算机工程》
北大核心
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部