期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于改进LRCN的鱼群摄食强度分类模型 被引量:13
1
作者 徐立鸿 黄薪 刘世晶 《农业机械学报》 EI CAS CSCD 北大核心 2022年第10期236-241,共6页
实现饵料的自动投喂是自动化水产养殖的重点,对鱼群的摄食强度进行识别能够为精准投饵提供参考。目前大多数关于鱼群摄食强度的研究都是基于循环养殖池或者自制鱼缸中,并不适用于开放式养殖池塘。基于实际环境,采用水上观测方式建立了... 实现饵料的自动投喂是自动化水产养殖的重点,对鱼群的摄食强度进行识别能够为精准投饵提供参考。目前大多数关于鱼群摄食强度的研究都是基于循环养殖池或者自制鱼缸中,并不适用于开放式养殖池塘。基于实际环境,采用水上观测方式建立了鱼群摄食强度视频数据集,并提出了一种基于改进长期卷积循环网络(LRCN)的鱼群摄食强度分类模型,将注意力机制SE模块嵌入卷积神经网络中,通过SE-CNN网络提取视频帧的特征,输入至双层GRU网络中,最后通过全连接分类层得出视频类别。提出的SE-LRCN模型实现了对鱼群摄食视频的强度三分类。试验结果表明,本文提出的模型分类准确率达到97%,F1值达到94.8%,与改进前的LRCN模型相比,准确率提高12个百分点,F1值提高12.4个百分点。研究模型可以更精细地识别鱼群的摄食强度,为自动化精准投饵提供参考。 展开更多
关键词 水产养殖 鱼群摄食强度 长期卷积循环网络 视频分类 挤压和激励模块
在线阅读 下载PDF
基于视差图指导的无参考立体图像质量评价
2
作者 李素梅 丁义修 +1 位作者 常永莉 韩旭 《天津大学学报(自然科学与工程技术版)》 EI CSCD 北大核心 2020年第8期854-860,共7页
考虑到视差图在立体成像中的重要性,设计了一种双通道的卷积神经网络来实现无参考立体图像质量评价.首先,建立一个以密集连接网络为主体的卷积神经网络结构,用于提取特征.其次,基于人类视觉系统的双目融合和双目竞争的特性,将左右视图进... 考虑到视差图在立体成像中的重要性,设计了一种双通道的卷积神经网络来实现无参考立体图像质量评价.首先,建立一个以密集连接网络为主体的卷积神经网络结构,用于提取特征.其次,基于人类视觉系统的双目融合和双目竞争的特性,将左右视图进行R、G、B三通道融合得到彩色融合图像,并将此融合图像作为卷积神经网络的一个通道的输入;另一通道的输入为视差图,视差图起到了特征补偿的作用.然后,通过改进挤压和激励模块来实现视差图对融合图像的加权指导.这种加权策略加强了融合图像的重要信息的比重,减轻了非重要信息的比重.最后,在卷积神经网络的末端,将视差图的特征和加权校正过的融合图像的特征进行融合得到总体特征,将总体特征与主观评价方法得分进行回归分析,得到待测立体图像的质量分数.在两个公开的LIVE立体数据库上进行实验验证.结果表明:所提出的无参考立体图像质量评价方法能够有效地应对对称和非对称失真类型的立体图像,并与主观评测方法保持高度一致. 展开更多
关键词 立体图像质量评价 融合图像 卷积神经网络 视差图 挤压和激励模块
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部