期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
面向卫星车载MEC网络的协同计算卸载方法
1
作者
赵季红
臧若雨
刘振
《计算机工程》
北大核心
2025年第9期49-58,共10页
车联网(IoV)环境中任务的动态性提高了实时计算卸载的复杂性。针对IoV场景中地面网络覆盖受限导致的实时任务难以及时完成的问题,提出一种面向卫星车载移动边缘计算网络(SVMECN)的协同计算卸载方法。首先,构建卫星与地面间的几何关系模...
车联网(IoV)环境中任务的动态性提高了实时计算卸载的复杂性。针对IoV场景中地面网络覆盖受限导致的实时任务难以及时完成的问题,提出一种面向卫星车载移动边缘计算网络(SVMECN)的协同计算卸载方法。首先,构建卫星与地面间的几何关系模型,计算设备与卫星、地面网关与卫星之间的传输速率,并基于该模型计算任务处理时延,模型充分考虑任务的实时性,动态调整卫星移动对地面数据传输的影响,通过卫星与地面网关的协作处理来满足车载应用对时延的要求;其次,提出一种基于指针注意力机制和Actor-Critic(ST-PART)的协同计算卸载算法,根据任务的实时性动态调整任务优先级,按照优先级顺序对任务进行计算卸载,并在不同计算节点之间动态选择和协同处理任务,以最小化任务处理时延。在SVMECN中对所提算法进行仿真,结果显示,与传统的启发式算法相比,所提算法在提高运行效率方面表现突出。实验和分析结果表明,所提算法在满足任务实时性需求的同时能够显著降低任务处理时延,与地面和卫星未协同的算法相比,该算法能够降低2.35%~68.68%的时延成本。
展开更多
关键词
星地协同网络
移动边缘计算
指针注意力
强化学习
计算卸载
在线阅读
下载PDF
职称材料
基于改进指针网络的卫星对地观测任务规划方法
被引量:
4
2
作者
马一凡
赵凡宇
+1 位作者
王鑫
金仲和
《浙江大学学报(工学版)》
EI
CAS
CSCD
北大核心
2021年第2期395-401,共7页
针对卫星观测任务规划问题约束复杂、求解空间大和输入任务序列长度不固定的特点,使用深度强化学习(DRL)方法对卫星观测任务规划问题进行求解.综合考虑时间窗口约束、任务间转移机动时间和卫星电量、存储约束,对卫星观测任务规划问题进...
针对卫星观测任务规划问题约束复杂、求解空间大和输入任务序列长度不固定的特点,使用深度强化学习(DRL)方法对卫星观测任务规划问题进行求解.综合考虑时间窗口约束、任务间转移机动时间和卫星电量、存储约束,对卫星观测任务规划问题进行建模.基于指针网络(PN)的运行机制建立序列决策算法模型,使用Mask向量来考虑卫星观测任务规划问题中的各类约束,并通过Actor Critic强化学习算法对模型进行训练,以获得最大的收益率.借鉴多头注意力(MHA)机制的思想对PN进行改进,提出多头注意力指针网络(MHA-PN)算法.根据实验结果可以看出,MHA-PN算法显著提高了模型的训练速度和泛化性能,训练好的MHA-PN算法模型可以直接对输入序列进行端到端的推理,避免传统启发式算法迭代求解的过程,具有较高的求解效率.
展开更多
关键词
卫星观测任务规划
组合优化问题
深度强化学习
指针
网络(PN)
Actor
Critic
多头
注意力
指针
网络(MHA-PN)
在线阅读
下载PDF
职称材料
题名
面向卫星车载MEC网络的协同计算卸载方法
1
作者
赵季红
臧若雨
刘振
机构
西安邮电大学通信与信息工程学院
西安交通大学电子信息工程学院
出处
《计算机工程》
北大核心
2025年第9期49-58,共10页
基金
国家重点研发计划重点专项项目(2018YFB1800305)。
文摘
车联网(IoV)环境中任务的动态性提高了实时计算卸载的复杂性。针对IoV场景中地面网络覆盖受限导致的实时任务难以及时完成的问题,提出一种面向卫星车载移动边缘计算网络(SVMECN)的协同计算卸载方法。首先,构建卫星与地面间的几何关系模型,计算设备与卫星、地面网关与卫星之间的传输速率,并基于该模型计算任务处理时延,模型充分考虑任务的实时性,动态调整卫星移动对地面数据传输的影响,通过卫星与地面网关的协作处理来满足车载应用对时延的要求;其次,提出一种基于指针注意力机制和Actor-Critic(ST-PART)的协同计算卸载算法,根据任务的实时性动态调整任务优先级,按照优先级顺序对任务进行计算卸载,并在不同计算节点之间动态选择和协同处理任务,以最小化任务处理时延。在SVMECN中对所提算法进行仿真,结果显示,与传统的启发式算法相比,所提算法在提高运行效率方面表现突出。实验和分析结果表明,所提算法在满足任务实时性需求的同时能够显著降低任务处理时延,与地面和卫星未协同的算法相比,该算法能够降低2.35%~68.68%的时延成本。
关键词
星地协同网络
移动边缘计算
指针注意力
强化学习
计算卸载
Keywords
collaborative satellite-terrestrial network
Mobile Edge Computing(MEC)
pointer attention
Reinforcement Learning(RL)
computation offloading
分类号
TN927.2 [电子电信—通信与信息系统]
在线阅读
下载PDF
职称材料
题名
基于改进指针网络的卫星对地观测任务规划方法
被引量:
4
2
作者
马一凡
赵凡宇
王鑫
金仲和
机构
浙江大学微小卫星研究中心
浙江省微纳卫星研究重点实验室
出处
《浙江大学学报(工学版)》
EI
CAS
CSCD
北大核心
2021年第2期395-401,共7页
基金
国家杰出青年科学基金资助项目(61525403)。
文摘
针对卫星观测任务规划问题约束复杂、求解空间大和输入任务序列长度不固定的特点,使用深度强化学习(DRL)方法对卫星观测任务规划问题进行求解.综合考虑时间窗口约束、任务间转移机动时间和卫星电量、存储约束,对卫星观测任务规划问题进行建模.基于指针网络(PN)的运行机制建立序列决策算法模型,使用Mask向量来考虑卫星观测任务规划问题中的各类约束,并通过Actor Critic强化学习算法对模型进行训练,以获得最大的收益率.借鉴多头注意力(MHA)机制的思想对PN进行改进,提出多头注意力指针网络(MHA-PN)算法.根据实验结果可以看出,MHA-PN算法显著提高了模型的训练速度和泛化性能,训练好的MHA-PN算法模型可以直接对输入序列进行端到端的推理,避免传统启发式算法迭代求解的过程,具有较高的求解效率.
关键词
卫星观测任务规划
组合优化问题
深度强化学习
指针
网络(PN)
Actor
Critic
多头
注意力
指针
网络(MHA-PN)
Keywords
satellite observation task planning
combinatorial optimization problem
deep reinforcement learning
pointer networks(PN)
Actor Critic
multi-head attention pointer networks(MHA-PN)
分类号
V474 [航空宇航科学与技术—飞行器设计]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
面向卫星车载MEC网络的协同计算卸载方法
赵季红
臧若雨
刘振
《计算机工程》
北大核心
2025
0
在线阅读
下载PDF
职称材料
2
基于改进指针网络的卫星对地观测任务规划方法
马一凡
赵凡宇
王鑫
金仲和
《浙江大学学报(工学版)》
EI
CAS
CSCD
北大核心
2021
4
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部