期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
椭圆曲线离散对数问题的研究进展
被引量:
11
1
作者
田松
李宝
王鲲鹏
《密码学报》
CSCD
2015年第2期177-188,共12页
自从1985年椭圆曲线密码被提出后,其理论和应用研究都受到了广泛关注.椭圆曲线密码体制的安全性基于椭圆曲线离散对数问题的困难性.由于计算一般椭圆曲线中离散对数的算法都是指数时间的,椭圆曲线密码体制能够以更小的密钥尺寸来满足与...
自从1985年椭圆曲线密码被提出后,其理论和应用研究都受到了广泛关注.椭圆曲线密码体制的安全性基于椭圆曲线离散对数问题的困难性.由于计算一般椭圆曲线中离散对数的算法都是指数时间的,椭圆曲线密码体制能够以更小的密钥尺寸来满足与其他公钥密码体制相同的安全性要求,从而特别适用于计算和存储能力受限的领域,许多标准化组织也相继提出了椭圆曲线上的公钥加密、密钥协商、数字签名协议的标准.利用Schoof's算法或复乘方法,人们可以很容易构造出密码学所需的椭圆曲线.通常推荐使用的椭圆曲线都定义在特征为2的有限域或素域上.为了加速有限域的运算,部分学者提议使用非素域有限域.然而对于非素域有限域上椭圆曲线中离散对数,基于求和多项式的指标计算法和Weil下降方法有可能比Pollard's Rho等一般性算法快.因此研究这些算法对椭圆曲线离散对数问题困难性的削弱程度以及相应的弱曲线特点对椭圆曲线密码学的安全应用有重大意义.本文将对解椭圆曲线离散对数问题的方法和研究进展做简单综述.
展开更多
关键词
椭圆曲线
离散对数问题
指标计算法
求和多项式
Weil下降
在线阅读
下载PDF
职称材料
题名
椭圆曲线离散对数问题的研究进展
被引量:
11
1
作者
田松
李宝
王鲲鹏
机构
中国科学院信息工程研究所信息安全国家重点实验室
中国科学院数据与通信保护研究教育中心
出处
《密码学报》
CSCD
2015年第2期177-188,共12页
基金
国家自然科学基金项目(61272040
61379137)
国家重点基础研究发展项目(973计划)(2013CB338001)
文摘
自从1985年椭圆曲线密码被提出后,其理论和应用研究都受到了广泛关注.椭圆曲线密码体制的安全性基于椭圆曲线离散对数问题的困难性.由于计算一般椭圆曲线中离散对数的算法都是指数时间的,椭圆曲线密码体制能够以更小的密钥尺寸来满足与其他公钥密码体制相同的安全性要求,从而特别适用于计算和存储能力受限的领域,许多标准化组织也相继提出了椭圆曲线上的公钥加密、密钥协商、数字签名协议的标准.利用Schoof's算法或复乘方法,人们可以很容易构造出密码学所需的椭圆曲线.通常推荐使用的椭圆曲线都定义在特征为2的有限域或素域上.为了加速有限域的运算,部分学者提议使用非素域有限域.然而对于非素域有限域上椭圆曲线中离散对数,基于求和多项式的指标计算法和Weil下降方法有可能比Pollard's Rho等一般性算法快.因此研究这些算法对椭圆曲线离散对数问题困难性的削弱程度以及相应的弱曲线特点对椭圆曲线密码学的安全应用有重大意义.本文将对解椭圆曲线离散对数问题的方法和研究进展做简单综述.
关键词
椭圆曲线
离散对数问题
指标计算法
求和多项式
Weil下降
Keywords
elliptic curve
discrete logarithm problem
index calculus
summation polynomial
Weil descent
分类号
TN918.1 [电子电信—通信与信息系统]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
椭圆曲线离散对数问题的研究进展
田松
李宝
王鲲鹏
《密码学报》
CSCD
2015
11
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部