期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于最优指标组合的代价敏感违约预测模型——以A股中小企业为例
被引量:
4
1
作者
沈隆
周颖
《系统管理学报》
CSSCI
CSCD
北大核心
2023年第3期560-579,共20页
企业违约预测是在当下时刻推断企业未来时刻发生违约事件的概率,与经济和社会息息相关。本研究的贡献在于:一是构造了兼顾指标组合违约预测精度和指标个数的多目标函数,通过sigmoid函数将蜉蝣算法转化为二进制蜉蝣算法,将其引入金融风...
企业违约预测是在当下时刻推断企业未来时刻发生违约事件的概率,与经济和社会息息相关。本研究的贡献在于:一是构造了兼顾指标组合违约预测精度和指标个数的多目标函数,通过sigmoid函数将蜉蝣算法转化为二进制蜉蝣算法,将其引入金融风险领域进行最优指标组合的遴选。二是在逻辑回归模型的对数似然函数中,给违约企业添加一个惩罚系数,以违约预测精度F-measure最大,反推最优的惩罚系数值,在保证总体判别精度的前提下,提高模型对违约企业的识别精度;同时使得逻辑回归求解的目标函数更贴合实际情况,确保了估计的权重向量更准确地反映指标数据与其违约状态间的函数关系。中小企业的实证研究表明:“高管年薪披露方式”“前十大股东是否存在关联”和“监事会持股比例”等企业内部非财务因素,以及“人均地区生产总值”“中长期贷款基准利率”和“货币和准货币供应量同比增长率”等宏观经济因素对中小企业违约预测的影响不容忽视。该方法可以提升对企业信用风险的识别能力,降低商业银行的不良贷款率。
展开更多
关键词
违约预测
指标组合遴选
对数似然函数
惩罚系数
中小企业
在线阅读
下载PDF
职称材料
基于XGBoost的中国上市公司违约风险预测模型
被引量:
7
2
作者
迟国泰
王珊珊
《系统管理学报》
CSSCI
CSCD
北大核心
2024年第3期735-754,共20页
准确预测上市公司的违约风险,是企业信用风险评价的关键,也是金融机构信贷决策的重要依据。通过线性回归模型的信息量AIC遴选违约判别能力最大的指标组合,采用粒子群优化算法构建基于XGBoost的违约预测模型。选取中国A股3425家上市公司...
准确预测上市公司的违约风险,是企业信用风险评价的关键,也是金融机构信贷决策的重要依据。通过线性回归模型的信息量AIC遴选违约判别能力最大的指标组合,采用粒子群优化算法构建基于XGBoost的违约预测模型。选取中国A股3425家上市公司不同时间窗口的数据为样本进行违约预测,将所构建的PSO-XGBoost模型与逻辑回归、支持向量机等13种预测模型对比,验证所建模型的有效性。通过UCI数据库中的3个公开信用数据集,利用Friedman检验,验证所建模型的稳健性。研究表明:使用上市公司数据与13种模型对比,PSO-XGBoost模型提高了预测精度G-mean;使用3个公开信用数据集,在多个评价指标上,PSO-XGBoost模型的平均预测性能显著优于对比模型;通过指标对预测结果的贡献获得指标重要性得分,增强了预测模型的可解释性。研究发现:“资产负债率”“流动比率”“长期资本负债率”等财务指标对违约预测的影响最大,“行业景气指数”“社会消费品零售总额增长率”“流通中现金(M0)供应量同比增长率”等指标是影响违约预测的重要指标。本研究可以为提高违约风险预测的准确性提供有效的方法和实证证据,有助于加强上市公司违约风险的预警和防范,降低违约风险监管成本,为企业管理者、债权人及投资者提供良好的决策支持。
展开更多
关键词
违约预测
指标组合遴选
决策树参数
在线阅读
下载PDF
职称材料
题名
基于最优指标组合的代价敏感违约预测模型——以A股中小企业为例
被引量:
4
1
作者
沈隆
周颖
机构
大连理工大学经济管理学院
出处
《系统管理学报》
CSSCI
CSCD
北大核心
2023年第3期560-579,共20页
基金
国家自然科学基金面上项目(72071026,72173096,71971051,71971034,71873103,72271040)
国家自然科学基金重点项目(71731003)
+2 种基金
国家自然科学基金青年科学基金资助项目(71901055,71903019,72201098)
国家自然科学基金地区科学基金资助项目(72161033)
国家社会科学基金重大项目(18ZDA095)。
文摘
企业违约预测是在当下时刻推断企业未来时刻发生违约事件的概率,与经济和社会息息相关。本研究的贡献在于:一是构造了兼顾指标组合违约预测精度和指标个数的多目标函数,通过sigmoid函数将蜉蝣算法转化为二进制蜉蝣算法,将其引入金融风险领域进行最优指标组合的遴选。二是在逻辑回归模型的对数似然函数中,给违约企业添加一个惩罚系数,以违约预测精度F-measure最大,反推最优的惩罚系数值,在保证总体判别精度的前提下,提高模型对违约企业的识别精度;同时使得逻辑回归求解的目标函数更贴合实际情况,确保了估计的权重向量更准确地反映指标数据与其违约状态间的函数关系。中小企业的实证研究表明:“高管年薪披露方式”“前十大股东是否存在关联”和“监事会持股比例”等企业内部非财务因素,以及“人均地区生产总值”“中长期贷款基准利率”和“货币和准货币供应量同比增长率”等宏观经济因素对中小企业违约预测的影响不容忽视。该方法可以提升对企业信用风险的识别能力,降低商业银行的不良贷款率。
关键词
违约预测
指标组合遴选
对数似然函数
惩罚系数
中小企业
Keywords
default prediction
indicator combination selection
log-likelihood function
penalty coefficient
small and medium-sized enterprises(SMEs)
分类号
F270 [经济管理—企业管理]
F832.4 [经济管理—金融学]
在线阅读
下载PDF
职称材料
题名
基于XGBoost的中国上市公司违约风险预测模型
被引量:
7
2
作者
迟国泰
王珊珊
机构
大连理工大学经济管理学院
出处
《系统管理学报》
CSSCI
CSCD
北大核心
2024年第3期735-754,共20页
基金
国家自然科学基金重点项目(71731003)
国家自然科学基金面上项目(72071026,72173096,71971051,71971034,71873103)
+2 种基金
国家自然科学基金青年科学基金资助项目(71901055,71903019)
国家自然科学基金地区科学基金资助项目(72161033)
国家社会科学基金重大项目(18ZDA095)。
文摘
准确预测上市公司的违约风险,是企业信用风险评价的关键,也是金融机构信贷决策的重要依据。通过线性回归模型的信息量AIC遴选违约判别能力最大的指标组合,采用粒子群优化算法构建基于XGBoost的违约预测模型。选取中国A股3425家上市公司不同时间窗口的数据为样本进行违约预测,将所构建的PSO-XGBoost模型与逻辑回归、支持向量机等13种预测模型对比,验证所建模型的有效性。通过UCI数据库中的3个公开信用数据集,利用Friedman检验,验证所建模型的稳健性。研究表明:使用上市公司数据与13种模型对比,PSO-XGBoost模型提高了预测精度G-mean;使用3个公开信用数据集,在多个评价指标上,PSO-XGBoost模型的平均预测性能显著优于对比模型;通过指标对预测结果的贡献获得指标重要性得分,增强了预测模型的可解释性。研究发现:“资产负债率”“流动比率”“长期资本负债率”等财务指标对违约预测的影响最大,“行业景气指数”“社会消费品零售总额增长率”“流通中现金(M0)供应量同比增长率”等指标是影响违约预测的重要指标。本研究可以为提高违约风险预测的准确性提供有效的方法和实证证据,有助于加强上市公司违约风险的预警和防范,降低违约风险监管成本,为企业管理者、债权人及投资者提供良好的决策支持。
关键词
违约预测
指标组合遴选
决策树参数
Keywords
default prediction
feature subset selection
parameters for decision tree
分类号
F830.56 [经济管理—金融学]
TP18 [自动化与计算机技术—控制理论与控制工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于最优指标组合的代价敏感违约预测模型——以A股中小企业为例
沈隆
周颖
《系统管理学报》
CSSCI
CSCD
北大核心
2023
4
在线阅读
下载PDF
职称材料
2
基于XGBoost的中国上市公司违约风险预测模型
迟国泰
王珊珊
《系统管理学报》
CSSCI
CSCD
北大核心
2024
7
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部