The determination of the compressibility of clay soils is a major concern during the design and construction of geotechnical engineering projects.Directly acquiring precise values of compression indicators from consol...The determination of the compressibility of clay soils is a major concern during the design and construction of geotechnical engineering projects.Directly acquiring precise values of compression indicators from consolidation tests is cumbersome and time-consuming.Based on experimental results from a series of index tests,this study presents a hybrid method that combines the extreme gradient boosting(XGBoost)model with the Bayesian optimization strategy to show the potential for achieving higher accuracy in predicting the compressibility indicators of clay soils.The results show that the proposed XGBoost model selected by Bayesian optimization can predict compression indicators more accurately and reliably than the artificial neural network(ANN)and support vector machine(SVM)models.In addition to the lowest prediction error,the proposed XGBoost-based method enhances the interpretability by feature importance analysis,which indicates that the void ratio is the most important factor when predicting the compressibility of clay soils.This paper highlights the promising prospect of the XGBoost model with Bayesian optimization for predicting unknown property parameters of clay soils and its capability to benefit the entire life cycle of engineering projects.展开更多
Most existing network representation learning algorithms focus on network structures for learning.However,network structure is only one kind of view and feature for various networks,and it cannot fully reflect all cha...Most existing network representation learning algorithms focus on network structures for learning.However,network structure is only one kind of view and feature for various networks,and it cannot fully reflect all characteristics of networks.In fact,network vertices usually contain rich text information,which can be well utilized to learn text-enhanced network representations.Meanwhile,Matrix-Forest Index(MFI)has shown its high effectiveness and stability in link prediction tasks compared with other algorithms of link prediction.Both MFI and Inductive Matrix Completion(IMC)are not well applied with algorithmic frameworks of typical representation learning methods.Therefore,we proposed a novel semi-supervised algorithm,tri-party deep network representation learning using inductive matrix completion(TDNR).Based on inductive matrix completion algorithm,TDNR incorporates text features,the link certainty degrees of existing edges and the future link probabilities of non-existing edges into network representations.The experimental results demonstrated that TFNR outperforms other baselines on three real-world datasets.The visualizations of TDNR show that proposed algorithm is more discriminative than other unsupervised approaches.展开更多
基金Project(202206370130)supported by the China Scholarship CouncilProject(2023ZZTS0034)supported by the Fundamental Research Funds for the Central Universities of Central South University,China。
文摘The determination of the compressibility of clay soils is a major concern during the design and construction of geotechnical engineering projects.Directly acquiring precise values of compression indicators from consolidation tests is cumbersome and time-consuming.Based on experimental results from a series of index tests,this study presents a hybrid method that combines the extreme gradient boosting(XGBoost)model with the Bayesian optimization strategy to show the potential for achieving higher accuracy in predicting the compressibility indicators of clay soils.The results show that the proposed XGBoost model selected by Bayesian optimization can predict compression indicators more accurately and reliably than the artificial neural network(ANN)and support vector machine(SVM)models.In addition to the lowest prediction error,the proposed XGBoost-based method enhances the interpretability by feature importance analysis,which indicates that the void ratio is the most important factor when predicting the compressibility of clay soils.This paper highlights the promising prospect of the XGBoost model with Bayesian optimization for predicting unknown property parameters of clay soils and its capability to benefit the entire life cycle of engineering projects.
基金Projects(11661069,61763041) supported by the National Natural Science Foundation of ChinaProject(IRT_15R40) supported by Changjiang Scholars and Innovative Research Team in University,ChinaProject(2017TS045) supported by the Fundamental Research Funds for the Central Universities,China
文摘Most existing network representation learning algorithms focus on network structures for learning.However,network structure is only one kind of view and feature for various networks,and it cannot fully reflect all characteristics of networks.In fact,network vertices usually contain rich text information,which can be well utilized to learn text-enhanced network representations.Meanwhile,Matrix-Forest Index(MFI)has shown its high effectiveness and stability in link prediction tasks compared with other algorithms of link prediction.Both MFI and Inductive Matrix Completion(IMC)are not well applied with algorithmic frameworks of typical representation learning methods.Therefore,we proposed a novel semi-supervised algorithm,tri-party deep network representation learning using inductive matrix completion(TDNR).Based on inductive matrix completion algorithm,TDNR incorporates text features,the link certainty degrees of existing edges and the future link probabilities of non-existing edges into network representations.The experimental results demonstrated that TFNR outperforms other baselines on three real-world datasets.The visualizations of TDNR show that proposed algorithm is more discriminative than other unsupervised approaches.