期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于EEMD-IGSA-LSSVM的超短期风电功率预测
被引量:
15
1
作者
江岳春
杨旭琼
+2 位作者
贺飞
陈礼锋
何钟南
《湖南大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2016年第10期70-78,共9页
为了提高风电场输出功率的预测精度,在保证安全操作的前提下,建立了一种基于集合经验模态分解(EEMD)、改进引力搜索算法(IGSA)、最小二乘支持向量机(LSSVM)相结合的风电功率组合预测模型.首先运用EEMD算法将风电功率时间序列分解成一系...
为了提高风电场输出功率的预测精度,在保证安全操作的前提下,建立了一种基于集合经验模态分解(EEMD)、改进引力搜索算法(IGSA)、最小二乘支持向量机(LSSVM)相结合的风电功率组合预测模型.首先运用EEMD算法将风电功率时间序列分解成一系列复杂度差异明显的子序列;其次利用相空间重构(PSR)对已分解好的子序列进行重构,对重构后的每个子序列分别建立IGSA-LSSVM预测模型,为分析不同核函数构造LSSVM的差异性,建立了8种核函数LSSVM预测模型,利用IGSA算法求解其模型;最后以中国内蒙古地区的某一风电场为算例,仿真及验算结果表明,利用IGSA算法寻优得到的指数径向基核函数核参数和惩罚因子构建的LSSVM模型具有较高的预测准确性;与EEMDWNN,EEMD-PSO-LSSVM等5种常规组合模型相比,所提出的指数径向基核函数的EEMD-IGSA-LSSVM组合模型能有效、准确地进行风电功率预测.
展开更多
关键词
集合经验模态分解
风功率预测
最小二乘向量机
改进引力搜索算法
指数径向基核函数
在线阅读
下载PDF
职称材料
题名
基于EEMD-IGSA-LSSVM的超短期风电功率预测
被引量:
15
1
作者
江岳春
杨旭琼
贺飞
陈礼锋
何钟南
机构
湖南大学电气与信息工程学院
出处
《湖南大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2016年第10期70-78,共9页
基金
国家自然科学基金资助项目(51277057)~~
文摘
为了提高风电场输出功率的预测精度,在保证安全操作的前提下,建立了一种基于集合经验模态分解(EEMD)、改进引力搜索算法(IGSA)、最小二乘支持向量机(LSSVM)相结合的风电功率组合预测模型.首先运用EEMD算法将风电功率时间序列分解成一系列复杂度差异明显的子序列;其次利用相空间重构(PSR)对已分解好的子序列进行重构,对重构后的每个子序列分别建立IGSA-LSSVM预测模型,为分析不同核函数构造LSSVM的差异性,建立了8种核函数LSSVM预测模型,利用IGSA算法求解其模型;最后以中国内蒙古地区的某一风电场为算例,仿真及验算结果表明,利用IGSA算法寻优得到的指数径向基核函数核参数和惩罚因子构建的LSSVM模型具有较高的预测准确性;与EEMDWNN,EEMD-PSO-LSSVM等5种常规组合模型相比,所提出的指数径向基核函数的EEMD-IGSA-LSSVM组合模型能有效、准确地进行风电功率预测.
关键词
集合经验模态分解
风功率预测
最小二乘向量机
改进引力搜索算法
指数径向基核函数
Keywords
ensemble empirical mode decomposition (EEMD)
wind power prediction
least squares support vector machine (LSSVM)
improved gravitational search algorithm(IGSA)
exponential radial basis function(ERBF)
分类号
TU375 [建筑科学—结构工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于EEMD-IGSA-LSSVM的超短期风电功率预测
江岳春
杨旭琼
贺飞
陈礼锋
何钟南
《湖南大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2016
15
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部