期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
融合汉字多级特征与文本局部特征的中文命名实体识别
1
作者 张慧 秦董洪 +3 位作者 白凤波 罗余特 刘成星 宋蕃桦 《中文信息学报》 CSCD 北大核心 2024年第9期93-107,共15页
针对目前中文命名实体识别模型在复杂语境下准确率较低的问题,添加更多汉字特征以弥补词向量表形、表音方面的不足,引入更多先验知识,丰富语义特征;同时设计一种兼顾全局特征与局部特征的编码器,提升模型面对复杂语境时的鲁棒性与泛化性... 针对目前中文命名实体识别模型在复杂语境下准确率较低的问题,添加更多汉字特征以弥补词向量表形、表音方面的不足,引入更多先验知识,丰富语义特征;同时设计一种兼顾全局特征与局部特征的编码器,提升模型面对复杂语境时的鲁棒性与泛化性;实验结果表明,该文提出的方法在Weibo、OntoNotes 5.0、Boson、People Daily数据集上F_(1)值分别提升1.61、0.37、0.98、0.98,验证汉字本身特征的重要性与通用性的同时,也验证了文本局部特征有助于提升模型性能。此外,还探究了八种不同汉字编码方式对模型性能的影响,实验证明相比于单个拼音字符,汉字的声母、韵母携带更多发音信息,音调、多音字等特征也有利于提升模型性能;最后,在多种文本实例上测试了模型性能,实验结果表明了该文工作的有效性。 展开更多
关键词 字形特征 拼音特征 文本局部特征 命名实体识别
在线阅读 下载PDF
采用拼音降维的中文对话模型 被引量:1
2
作者 吴邦誉 周越 +1 位作者 赵群飞 张朋柱 《中文信息学报》 CSCD 北大核心 2019年第5期113-121,共9页
对话是自然语言处理的一个重要研究领域,其成果已经得到广泛的应用。然而中文对话模型训练时由于字词数量庞大,必然会面临模型复杂度过高的问题。为解决此问题,该文首先将对话模型的汉字输入转化为拼音输入并将拼音分为声母、韵母和声... 对话是自然语言处理的一个重要研究领域,其成果已经得到广泛的应用。然而中文对话模型训练时由于字词数量庞大,必然会面临模型复杂度过高的问题。为解决此问题,该文首先将对话模型的汉字输入转化为拼音输入并将拼音分为声母、韵母和声调三个部分,以此减小输入的字词数量。然后以嵌入编码的方法将拼音信息组合为图像形式,再通过全卷积神经网络(FCN)和双向Long Short Term Memory(LSTM)网络提取拼音特征。最后采用4层的Gated Recurrent Units(GRU)网络对拼音特征进行解码以解决长时记忆问题,得到对话模型的输出。在此基础上,模型在解码阶段加入了注意力机制,使模型的输出可以更好地与输入进行对应。为对提出的中文对话模型进行评价,该文建立了应用于医疗领域的中文对话数据库,并以BLEU和ROUGE_L为评价指标在该数据库上对模型进行了测试。 展开更多
关键词 对话模型 拼音特征 注意力机制
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部