期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
重构谐波平衡法及其求解复杂非线性问题应用 被引量:1
1
作者 代洪华 王其偲 +1 位作者 严子朴 岳晓奎 《力学学报》 EI CAS CSCD 北大核心 2024年第1期212-224,共13页
谐波平衡法是求解非线性动力学系统周期解的最常用方法,但对非线性项进行高阶近似需要庞杂的公式推导,限制了该方法的超高精度解算.通过对频域非线性量的时域等价重构,提出了重构谐波平衡法(RHB法),解决了经典谐波平衡法超高阶次计算难... 谐波平衡法是求解非线性动力学系统周期解的最常用方法,但对非线性项进行高阶近似需要庞杂的公式推导,限制了该方法的超高精度解算.通过对频域非线性量的时域等价重构,提出了重构谐波平衡法(RHB法),解决了经典谐波平衡法超高阶次计算难题.然而,上述两种方法均要求动力学系统为多项式型非线性,且无法直接用来求解非线性系统的拟周期解.针对上述问题,文章提出一种将RHB法和复杂非线性系统等价重铸法相结合的计算方法,首先将一般非线性问题无损重铸为多项式型非线性系统,然后用RHB法进行高精度求解;针对拟周期响应求解问题,提出基于“补频”思想的RHB方法,通过基频的优化筛选,实现拟周期响应的快速精准捕捉.选取非线性单摆、相对论谐振子和非线性耦合非对称摆等典型系统进行仿真计算,仿真结果表明,所提出的RHB-重铸法在解非多项式型非线性系统的稳态响应时精度保持为10^(-12)量级,达计算机精度,远超现有方法水平.补频RHB法则实现了对拟周期问题的高效解算,拓宽了方法对真实物理响应的求解范围. 展开更多
关键词 非多项式型非线性系统 重构谐波平衡法 微分方程重铸 非线性单摆 拟周期响应
在线阅读 下载PDF
复变量平均法与其他近似方法的异同
2
作者 隋鹏 申永军 王晓娜 《振动与冲击》 EI CSCD 北大核心 2023年第10期289-296,共8页
复变量平均法因其通用性和实用性受到学界的大量关注,但在求解系统响应时会产生一定误差。该研究旨在通过比较不同近似方法间的区别揭示各方法的精度差异和适用条件。应用复变量平均法、多尺度法和谐波平衡法获得单自由度自治和非自治... 复变量平均法因其通用性和实用性受到学界的大量关注,但在求解系统响应时会产生一定误差。该研究旨在通过比较不同近似方法间的区别揭示各方法的精度差异和适用条件。应用复变量平均法、多尺度法和谐波平衡法获得单自由度自治和非自治系统的近似解析解,并以Duffing振子为算例进行数值验证。随后针对二自由度非线性能量阱系统,推导出系统稳态响应的半解析解,以振幅和均方根值为评价指标描述系统的响应情况。结果表明:对于单自由度系统,复变量平均法和多尺度法得到的衰减振动瞬态解相同,不同于谐波平衡法;三种方法获得的受迫振动稳态解相同。三者对于弱非线性自治系统和非自治系统响应的近似准确率较高。复变量平均法和谐波平衡法均能良好地描述二自由度耦合系统的稳态周期运动且精度较高。当出现拟周期运动时,以均方根值为指标,复变量平均法的解析效果更好;以振幅为指标,谐波平衡法的近似程度更高。 展开更多
关键词 复变量平均法 多尺度法 谐波平衡法 非线性系统 拟周期响应
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部