本文提出了一种无限长时间序列的分段线性拟合(Infinite Time Series-Piecewice Linear Fitting,简称ITS-PLF)算法,该算法根据关键点保持时间段的统计特性,确定选择关键点的区间范围;若极值点的保持时间段不在区间范围,则根据包含极值...本文提出了一种无限长时间序列的分段线性拟合(Infinite Time Series-Piecewice Linear Fitting,简称ITS-PLF)算法,该算法根据关键点保持时间段的统计特性,确定选择关键点的区间范围;若极值点的保持时间段不在区间范围,则根据包含极值点的连续三个时间数据之间的夹角与筛选角度之间的关系,判断该极值点成为关键点的可能性.实验表明,ITS-PLF算法的执行不依赖于时间序列长度及领域知识,可以有效识别关键点,并可根据数据压缩率的变化实现自适应拟合.展开更多
为提高幅相键控(APSK)信号和正交调幅(QAM)信号信噪比估计范围和精度,提出了一种改进的信号信噪比估计算法。算法首先计算接收信号平方的均值和绝对值的均值之比,然后根据星座图特征,利用多项式拟合该比值与信噪比的关系。在拟合过...为提高幅相键控(APSK)信号和正交调幅(QAM)信号信噪比估计范围和精度,提出了一种改进的信号信噪比估计算法。算法首先计算接收信号平方的均值和绝对值的均值之比,然后根据星座图特征,利用多项式拟合该比值与信噪比的关系。在拟合过程中,对信噪比区间进行分段拟合来提高各段拟合精度,并用蒙特卡洛仿真经验值修正算法的固有偏差,从而得到信噪比的近似无偏估计。仿真结果表明,当信噪比估计区间为-5~20 d B且数据长度合适时,16APSK和32APSK信号信噪比估计偏差均值小于0.5 d B,标准差小于2 d B;该算法对16QAM和32QAM信号信噪比估计的标准差小于传统数据拟合算法。该算法运算复杂度较低,便于实时应用和硬件实现,对恒模和非恒模信号均能实现信噪比宽范围精确盲估计。展开更多
文摘本文提出了一种无限长时间序列的分段线性拟合(Infinite Time Series-Piecewice Linear Fitting,简称ITS-PLF)算法,该算法根据关键点保持时间段的统计特性,确定选择关键点的区间范围;若极值点的保持时间段不在区间范围,则根据包含极值点的连续三个时间数据之间的夹角与筛选角度之间的关系,判断该极值点成为关键点的可能性.实验表明,ITS-PLF算法的执行不依赖于时间序列长度及领域知识,可以有效识别关键点,并可根据数据压缩率的变化实现自适应拟合.
文摘为提高幅相键控(APSK)信号和正交调幅(QAM)信号信噪比估计范围和精度,提出了一种改进的信号信噪比估计算法。算法首先计算接收信号平方的均值和绝对值的均值之比,然后根据星座图特征,利用多项式拟合该比值与信噪比的关系。在拟合过程中,对信噪比区间进行分段拟合来提高各段拟合精度,并用蒙特卡洛仿真经验值修正算法的固有偏差,从而得到信噪比的近似无偏估计。仿真结果表明,当信噪比估计区间为-5~20 d B且数据长度合适时,16APSK和32APSK信号信噪比估计偏差均值小于0.5 d B,标准差小于2 d B;该算法对16QAM和32QAM信号信噪比估计的标准差小于传统数据拟合算法。该算法运算复杂度较低,便于实时应用和硬件实现,对恒模和非恒模信号均能实现信噪比宽范围精确盲估计。