期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于拉格朗日插值的无网格直接配点法和稳定配点法 被引量:4
1
作者 胡明皓 王莉华 《力学学报》 EI CAS CSCD 北大核心 2023年第7期1526-1536,共11页
由于无网格法中大多数近似函数均为有理式,不具有Kronecker delta性质,因此难以精确地施加本质边界条件.边界误差较大容易导致整个求解域求解结果精度低,甚至引起数值不稳定现象.文章在无网格直接配点法和稳定配点法中引入拉格朗日插值... 由于无网格法中大多数近似函数均为有理式,不具有Kronecker delta性质,因此难以精确地施加本质边界条件.边界误差较大容易导致整个求解域求解结果精度低,甚至引起数值不稳定现象.文章在无网格直接配点法和稳定配点法中引入拉格朗日插值函数作为形函数,构建了拉格朗日插值配点法(LICM)和拉格朗日插值稳定配点法(SLICM).由于拉格朗日插值具有Kronecker delta性质,可以像有限元法一样简单而精确地施加本质边界条件,提高这两种方法的数值求解精度.稳定配点法基于子域对强形式方程进行积分,可以满足高阶积分约束,即可以保证形函数在积分形式下也满足高阶一致性条件,实现精确积分.同时,进行子域积分还可以减少离散矩阵的条件数,从而提高算法的稳定性.进一步提高拉格朗日插值稳定配点法的精度和稳定性.通过数值算例验证这两种方法的精度、收敛性和稳定性,结果表明基于拉格朗日插值的配点法的精度优于基于重构核近似的配点法,拉格朗日插值稳定配点法的精度和稳定性均优于拉格朗日插值配点法. 展开更多
关键词 拉格朗日插值配点法 拉格朗插值稳定 Kronecker delta性质 精确积分 精度 稳定性
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部