-
题名基于拉格朗日插值的无网格直接配点法和稳定配点法
被引量:4
- 1
-
-
作者
胡明皓
王莉华
-
机构
同济大学航空航天与力学学院
-
出处
《力学学报》
EI
CAS
CSCD
北大核心
2023年第7期1526-1536,共11页
-
基金
国家自然科学基金资助项目(11972261,12272270)。
-
文摘
由于无网格法中大多数近似函数均为有理式,不具有Kronecker delta性质,因此难以精确地施加本质边界条件.边界误差较大容易导致整个求解域求解结果精度低,甚至引起数值不稳定现象.文章在无网格直接配点法和稳定配点法中引入拉格朗日插值函数作为形函数,构建了拉格朗日插值配点法(LICM)和拉格朗日插值稳定配点法(SLICM).由于拉格朗日插值具有Kronecker delta性质,可以像有限元法一样简单而精确地施加本质边界条件,提高这两种方法的数值求解精度.稳定配点法基于子域对强形式方程进行积分,可以满足高阶积分约束,即可以保证形函数在积分形式下也满足高阶一致性条件,实现精确积分.同时,进行子域积分还可以减少离散矩阵的条件数,从而提高算法的稳定性.进一步提高拉格朗日插值稳定配点法的精度和稳定性.通过数值算例验证这两种方法的精度、收敛性和稳定性,结果表明基于拉格朗日插值的配点法的精度优于基于重构核近似的配点法,拉格朗日插值稳定配点法的精度和稳定性均优于拉格朗日插值配点法.
-
关键词
拉格朗日插值配点法
拉格朗日插值稳定配点法
Kronecker
delta性质
精确积分
精度
稳定性
-
Keywords
Lagrange interpolation collocation method
stabilized Lagrange interpolation collocation method
Kronecker delta property
exact integral
accuracy
stability
-
分类号
O241.82
[理学—计算数学]
-