期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
融合位置和结构信息的图神经网络的节点学习研究
1
作者 郝佳辉 万源 张宇航 《计算机科学》 北大核心 2025年第7期110-118,共9页
图神经网络是一种强大的学习图数据的模型,通过节点信息嵌入和图卷积运算实现图结构数据的表示。图数据中节点的结构信息和节点的位置信息对获取图特征至关重要,但现有的图神经网络同时捕获位置信息和结构信息的表达能力有限。对此,提... 图神经网络是一种强大的学习图数据的模型,通过节点信息嵌入和图卷积运算实现图结构数据的表示。图数据中节点的结构信息和节点的位置信息对获取图特征至关重要,但现有的图神经网络同时捕获位置信息和结构信息的表达能力有限。对此,提出了一种新的图神经网络——融合位置和结构信息的图神经网络(Positional and Structural Information with Graph Neural Networks, PSI-GNN)。PSI-GNN的核心思想在于利用编码器获取节点的位置和结构信息,并将这些信息特征嵌入到网络中。通过在网络中更新和传递这两种信息,PSI-GNN实现了对位置和结构信息的有效融合与利用,为解决上述问题提供了有效的解决方案。同时,为应对不同类型的图学习任务,PSI-GNN给予位置和结构信息以不同的权重来应对不同的下游任务。为了验证PSI-GNN的有效性,在多个基准图数据集上进行了实验。实验结果表明,PSI-GNN在节点级任务上最高提升了约14%,在图级任务上最高提升了约35%,验证了PSI-GNN在同时捕获位置和结构信息方面的有效性。 展开更多
关键词 图神经网络 位置信息 结构信息 拉普拉斯位置编码 Adamic-Adar结构编码
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部