期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于多尺度并行深度可拆分的CNN新冠肺炎CT图像去噪方法
被引量:
4
1
作者
张硕
余世明
《高技术通讯》
CAS
2021年第11期1145-1153,共9页
目前新冠肺炎(COVID-19)在全球蔓延,为了对新冠肺炎进行早期诊断,同时减轻医护人员的工作压力,使用深度学习对患者胸部电子计算机断层扫描(CT)图像进行分析变得越来越重要。针对肺炎图像中纹理细节较为丰富、边缘结构模糊、极易干扰机...
目前新冠肺炎(COVID-19)在全球蔓延,为了对新冠肺炎进行早期诊断,同时减轻医护人员的工作压力,使用深度学习对患者胸部电子计算机断层扫描(CT)图像进行分析变得越来越重要。针对肺炎图像中纹理细节较为丰富、边缘结构模糊、极易干扰机器及医生诊断的问题,本文提出一种基于多尺度并行深度可拆分卷积神经网络(MSP-ReCNN),对新冠肺炎CT图像进行去噪处理,提升肺炎图像质量。多尺度特征提取模块从不同尺度提取肺炎图像中的纹理特征细节,采用深浅通道并行方式,分别提取肺炎图像中的高维度以及低维度的特征。为进一步优化网络模型,提出一种拆分卷积方式,可将特征图拆分为两类,一类为主要关注特征,另一类为次要关注特征。使用复杂度高的计算方式从主要关注特征中提取关键信息,对于次要关注特征,则采取复杂度低的计算方式提取补偿信息。通过与非局部均值(NLM)去噪算法、收缩卷积神经网络(SCNN)深度模型、去噪卷积神经网络(DnCNN)深度模型对比,以及网络消融实验,可以看出本文提出的模型能有效去除肺炎图像中的噪声,并且可以更好地保留原始图像中的纹理结构细节,为机器以及医生提供更可靠的辅助诊断。
展开更多
关键词
新冠肺炎(COVID-19)电子计算机断层扫描(CT)图像
图像去噪
多尺度特征
深浅通道并行
拆分卷积
在线阅读
下载PDF
职称材料
题名
基于多尺度并行深度可拆分的CNN新冠肺炎CT图像去噪方法
被引量:
4
1
作者
张硕
余世明
机构
浙江工业大学信息工程学院
出处
《高技术通讯》
CAS
2021年第11期1145-1153,共9页
基金
国家自然科学基金(61772471)资助项目。
文摘
目前新冠肺炎(COVID-19)在全球蔓延,为了对新冠肺炎进行早期诊断,同时减轻医护人员的工作压力,使用深度学习对患者胸部电子计算机断层扫描(CT)图像进行分析变得越来越重要。针对肺炎图像中纹理细节较为丰富、边缘结构模糊、极易干扰机器及医生诊断的问题,本文提出一种基于多尺度并行深度可拆分卷积神经网络(MSP-ReCNN),对新冠肺炎CT图像进行去噪处理,提升肺炎图像质量。多尺度特征提取模块从不同尺度提取肺炎图像中的纹理特征细节,采用深浅通道并行方式,分别提取肺炎图像中的高维度以及低维度的特征。为进一步优化网络模型,提出一种拆分卷积方式,可将特征图拆分为两类,一类为主要关注特征,另一类为次要关注特征。使用复杂度高的计算方式从主要关注特征中提取关键信息,对于次要关注特征,则采取复杂度低的计算方式提取补偿信息。通过与非局部均值(NLM)去噪算法、收缩卷积神经网络(SCNN)深度模型、去噪卷积神经网络(DnCNN)深度模型对比,以及网络消融实验,可以看出本文提出的模型能有效去除肺炎图像中的噪声,并且可以更好地保留原始图像中的纹理结构细节,为机器以及医生提供更可靠的辅助诊断。
关键词
新冠肺炎(COVID-19)电子计算机断层扫描(CT)图像
图像去噪
多尺度特征
深浅通道并行
拆分卷积
Keywords
coronavirus disease 2019(COVID-19)computed tomography(CT)image
image denoising
multi-scale feature
deep and shallow parallel channel
split convolution
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
TP183 [自动化与计算机技术—控制理论与控制工程]
R563.1 [医药卫生—呼吸系统]
R816.4 [医药卫生—放射医学]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于多尺度并行深度可拆分的CNN新冠肺炎CT图像去噪方法
张硕
余世明
《高技术通讯》
CAS
2021
4
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部