期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于DDE-BIT的无人机高速公路护栏损坏检测
1
作者 王洋 郭杜杜 帅洪波 《现代电子技术》 北大核心 2025年第4期123-129,共7页
针对现有方法对无人机高速公路护栏损坏检测存在边缘信息提取效果差、识别精度低的问题,提出一种基于深度学习的变化检测模型DDE-BIT。首先,采用深度可分离卷积优化主干网络Resnet18,减少模型的参数数量,降低计算成本;然后,在主干网络... 针对现有方法对无人机高速公路护栏损坏检测存在边缘信息提取效果差、识别精度低的问题,提出一种基于深度学习的变化检测模型DDE-BIT。首先,采用深度可分离卷积优化主干网络Resnet18,减少模型的参数数量,降低计算成本;然后,在主干网络输出部分引入ECA注意力模块,在仅增加少量参数的情况下提高模型的跨通道信息捕捉能力;最后,通过跳跃连接方式对BIT双时空图像转换器的输出特征进行堆叠,提高模型的上下文信息理解能力。以采集的无人机高速公路护栏损坏图像为实验数据,实验结果表明:DDE-BIT模型的交并比和F1分数分别为90.99%、95.28%,相较于原始模型分别提高了2.71%、1.51%,能够有效地提取护栏损坏的边缘信息。 展开更多
关键词 护栏损坏检测 无人机 ECA注意力机制 深度可分离卷积 图像处理 信息提取
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部