The response of enzyme and non-enzymatic antioxidants of Mn hyperaccumuator, Polygonum hydropiper (P. hydropiper), to Mn stress was studied using hydroponics culture experiments to explore the mechanism of Mn tolera...The response of enzyme and non-enzymatic antioxidants of Mn hyperaccumuator, Polygonum hydropiper (P. hydropiper), to Mn stress was studied using hydroponics culture experiments to explore the mechanism of Mn tolerance in this species. Results showed that both chlorophyll and carotenoid contents significantly (p〈0.05) decreased with increasing Mn treatment levels (0, 0.5, 1, 2, 4, and 8 mg/L) in hydroponics. The concentrations of malondialdehyde (MDA) and hydrogen peroxide (H202) in the root and shoot of P hydropiper were accumulated under Mn stress. Meanwhile, the anti-oxidative functions of several important enzymes, including superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and peroxidase (POD) in plants were stimulated by Mn spike in leaves and roots, especially at low Mn stress; while sulfhydryl group (--SH) and glutathion (GSH) were likely involved in Mn detoxification ofP. hydropiper under high Mn stress.展开更多
The stability of ionic liquid additive 1-butyl-3-methylimidazolium hydrogen sulfate ([BMIM]HSO4) during zinc electrowinning from acidic sulfate solution was investigated by cyclic voltammetry, electrochemical impeda...The stability of ionic liquid additive 1-butyl-3-methylimidazolium hydrogen sulfate ([BMIM]HSO4) during zinc electrowinning from acidic sulfate solution was investigated by cyclic voltammetry, electrochemical impedance spectroscopy and scanning electron microscopy. Compared with the traditional industrial additives, gelatine and gum arabic, [BMIM]HSO4 has more excellent chemical and thermal stabilities. The inhibition effects of gelatine and gum arabic on the zinc electrocrystallization are observed to markedly weaken due to their part degradation after 12 h longtime successive electrolysis and high temperature (90 ℃) treatments. In contrast, the activity of [BMIM]HSO4 is practically unaffected after 24 h longtime successive electrolysis and high temperature treatments. These results are corroborated with the corresponding morphological analysis of the cathodic deposits.展开更多
基金Project(41161057)supported by the National Natural Science Foundation of ChinaProject(Guikezhuan 14122008-2)supported by Guangxi Provincial Science and Technology Development,China+2 种基金Project(2014GXNSFAA118303)supported by the Natural Science Foundation of Guangxi Province,ChinaProjects(YRHJ15K002,YRHJ15Z026)supported by Key Laboratory of Karst Ecology and Environment Change of Guangxi Normal University,ChinaProject(2016JJ6135)supported by the Natural Science Foundation of Hunan Province,China
文摘The response of enzyme and non-enzymatic antioxidants of Mn hyperaccumuator, Polygonum hydropiper (P. hydropiper), to Mn stress was studied using hydroponics culture experiments to explore the mechanism of Mn tolerance in this species. Results showed that both chlorophyll and carotenoid contents significantly (p〈0.05) decreased with increasing Mn treatment levels (0, 0.5, 1, 2, 4, and 8 mg/L) in hydroponics. The concentrations of malondialdehyde (MDA) and hydrogen peroxide (H202) in the root and shoot of P hydropiper were accumulated under Mn stress. Meanwhile, the anti-oxidative functions of several important enzymes, including superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and peroxidase (POD) in plants were stimulated by Mn spike in leaves and roots, especially at low Mn stress; while sulfhydryl group (--SH) and glutathion (GSH) were likely involved in Mn detoxification ofP. hydropiper under high Mn stress.
基金Project(2011FA009) supported by the Natural Science Foundation of Yunnan Province,ChinaProject(2011FZ020) supported by the Application Foundation Research of Yunnan Province,China
文摘The stability of ionic liquid additive 1-butyl-3-methylimidazolium hydrogen sulfate ([BMIM]HSO4) during zinc electrowinning from acidic sulfate solution was investigated by cyclic voltammetry, electrochemical impedance spectroscopy and scanning electron microscopy. Compared with the traditional industrial additives, gelatine and gum arabic, [BMIM]HSO4 has more excellent chemical and thermal stabilities. The inhibition effects of gelatine and gum arabic on the zinc electrocrystallization are observed to markedly weaken due to their part degradation after 12 h longtime successive electrolysis and high temperature (90 ℃) treatments. In contrast, the activity of [BMIM]HSO4 is practically unaffected after 24 h longtime successive electrolysis and high temperature treatments. These results are corroborated with the corresponding morphological analysis of the cathodic deposits.