Because of actual requirement,shield machine always excavates with an inclined angle in longitudinal direction.Since many previous studies mainly focus on the face stability of the horizontal shield tunnel,the effects...Because of actual requirement,shield machine always excavates with an inclined angle in longitudinal direction.Since many previous studies mainly focus on the face stability of the horizontal shield tunnel,the effects of tensile strength cut-off and pore water pressure on the face stability of the longitudinally inclined shield tunnel are not well investigated.A failure mechanism of a longitudinally inclined shield tunnel face is constructed based on the spatial discretization technique and the tensile strength cut-off criterion is introduced to modify the constructed failure mechanism.The pore water pressure is introduced as an external force into the equation of virtual work and the objective function of the chamber pressure of the shield machine is obtained.Moreover,the critical chamber pressure of the longitudinally inclined shield tunnel is computed by optimal calculation.Parametric analysis indicates that both tensile strength cut-off and pore water pressure have a significant impact on the chamber pressure and the range of the collapse block.Finally,the theoretical results are compared with the numerical results calculated by FLAC3D software which proves that the proposed approach is effective.展开更多
Partially replacing polyvinyl-alcohol(PVA)fibers with polypropylene(PP)fibers in strain-hardening cementitious composites(fiber hybridization)modify certain mechanical properties of these materials.The hybridization b...Partially replacing polyvinyl-alcohol(PVA)fibers with polypropylene(PP)fibers in strain-hardening cementitious composites(fiber hybridization)modify certain mechanical properties of these materials.The hybridization based on the introduction of low-modulus hydrophobic polypropylene fibers improves the ductility and the strain-hardening behavior of the cementitious composites containing polyvinyl-alcohol fibers of different types(PVA-SHCC).Pull-out tests indicate that adding PP fibers increases the energy capacity of the hybrid composite with respect to the material containing only PVA fibers under tensile loading,and PP-fiber geometry(i.e.,section shape and length)is a key factor in enhancing the strain capacity.展开更多
Effect of tempering temperature on the microstructure and mechanical properties of AISI 6150 steel was investigated. All samples were austenitized at 870 ℃ for 45 min followed by oil quenching, and then tempered at t...Effect of tempering temperature on the microstructure and mechanical properties of AISI 6150 steel was investigated. All samples were austenitized at 870 ℃ for 45 min followed by oil quenching, and then tempered at temperatures between 200 and 600 ℃ for 60 min. The results show that the microstructure of tempered sample at 200 ℃ mainly consists of tempered martensite. With increasing the tempered temperature, the martensite transforms to the ferrite and carbides. The ultimate tensile strength, the hardness and the retained austenite decrease with increasing tempered temperature, and 0.2% yield strength increases when the temperature increases from 200 to 300 ℃ and then decreases with increasing the temperature, but the elongation and impact energy increase with increasing the tempering temperature.展开更多
基金Projects(52278395,52208409) supported by the National Natural Science Foundation of ChinaProject(2022JJ40531) supported by the Natural Science Foundation of Hunan Province,China。
文摘Because of actual requirement,shield machine always excavates with an inclined angle in longitudinal direction.Since many previous studies mainly focus on the face stability of the horizontal shield tunnel,the effects of tensile strength cut-off and pore water pressure on the face stability of the longitudinally inclined shield tunnel are not well investigated.A failure mechanism of a longitudinally inclined shield tunnel face is constructed based on the spatial discretization technique and the tensile strength cut-off criterion is introduced to modify the constructed failure mechanism.The pore water pressure is introduced as an external force into the equation of virtual work and the objective function of the chamber pressure of the shield machine is obtained.Moreover,the critical chamber pressure of the longitudinally inclined shield tunnel is computed by optimal calculation.Parametric analysis indicates that both tensile strength cut-off and pore water pressure have a significant impact on the chamber pressure and the range of the collapse block.Finally,the theoretical results are compared with the numerical results calculated by FLAC3D software which proves that the proposed approach is effective.
文摘Partially replacing polyvinyl-alcohol(PVA)fibers with polypropylene(PP)fibers in strain-hardening cementitious composites(fiber hybridization)modify certain mechanical properties of these materials.The hybridization based on the introduction of low-modulus hydrophobic polypropylene fibers improves the ductility and the strain-hardening behavior of the cementitious composites containing polyvinyl-alcohol fibers of different types(PVA-SHCC).Pull-out tests indicate that adding PP fibers increases the energy capacity of the hybrid composite with respect to the material containing only PVA fibers under tensile loading,and PP-fiber geometry(i.e.,section shape and length)is a key factor in enhancing the strain capacity.
基金Project(2011BAE13B03) supported by the National Key Technology R&D Program of China
文摘Effect of tempering temperature on the microstructure and mechanical properties of AISI 6150 steel was investigated. All samples were austenitized at 870 ℃ for 45 min followed by oil quenching, and then tempered at temperatures between 200 and 600 ℃ for 60 min. The results show that the microstructure of tempered sample at 200 ℃ mainly consists of tempered martensite. With increasing the tempered temperature, the martensite transforms to the ferrite and carbides. The ultimate tensile strength, the hardness and the retained austenite decrease with increasing tempered temperature, and 0.2% yield strength increases when the temperature increases from 200 to 300 ℃ and then decreases with increasing the temperature, but the elongation and impact energy increase with increasing the tempering temperature.