抗差Kalman滤波是控制GNSS动态导航定位中观测异常的有效算法,当应用到GPS/BDS实时动态精密单点定位(Precise Point Positioning,PPP)时,会出现某些历元定位精度甚至不如单一系统定位精度高,这主要是因为同一接收机接收的不同种类卫星...抗差Kalman滤波是控制GNSS动态导航定位中观测异常的有效算法,当应用到GPS/BDS实时动态精密单点定位(Precise Point Positioning,PPP)时,会出现某些历元定位精度甚至不如单一系统定位精度高,这主要是因为同一接收机接收的不同种类卫星观测量的随机特性不同,使得观测量验后残差的分布特性不一致,抗差估计时随机特性不同的观测量验后残差互比,反而对某一系统优质数据也进行了降权,导致定位结果出现偏差,减弱了GPS/BDS融合精密单点定位的优势。针对这一问题,提出了卫星分群的抗差Kalman滤波算法,并应用到GPS/BDS融合精密单点定位中,算法的核心是在每一历元观测数据质量控制时根据卫星类型分类构建方差膨胀因子,给出了算法的实施步骤,最后通过MGEX实测数据进行了验证,结果表明算法应用到GPS/BDS融合精密单点定位中,相较传统的抗差Kalman滤波算法在东、北、天三个方向分别提高了34.6%、33.3%、31.0%,同时表明该算法提高了GPS/BDS融合精密单点定位的可靠性。展开更多
针对矿井巷道NLOS(Non Line Of Sight)时延影响矿井TOA(Time Of Arrival)定位精度的问题,通过分析巷道NLOS时延形成方式,将巷道NLOS时延分为随机和固定两类,结合两类巷道NLSO时延的特性,提出了一种基于自适应抗差卡尔曼滤波的巷道NLOS...针对矿井巷道NLOS(Non Line Of Sight)时延影响矿井TOA(Time Of Arrival)定位精度的问题,通过分析巷道NLOS时延形成方式,将巷道NLOS时延分为随机和固定两类,结合两类巷道NLSO时延的特性,提出了一种基于自适应抗差卡尔曼滤波的巷道NLOS时延抑制方法。对于巷道随机NLOS时延,通过在经典卡尔曼滤波算法的基础上引入了自适应抗差概念,使系统在线性滤波的基础上增加了对随机脉冲误差的抑制能力;对于巷道固定NLOS时延,通过在巷道NLOS误差模型的基础上,构建巷道中信号传播距离与传播环境间的函数模型,并结合几何定位算法完成系统对固有误差的有效抑制。实验结果显示,包含有巷道NLOS时延的原始定位数据,误差在2.1~8.1 m之间,平均误差为3.7 m;原始数据经自适应抗差卡尔曼滤波算法处理后,误差在1.9~3.6 m之间,平均误差为2.5 m,定位曲线与实际移动曲线基本保持平行;再经参数拟合和几何算法处理,误差在0~1.0 m之间波动,误差平均值为0.27 m,且所提方法较原始定位数据,平均定位误差减小了3.43 m.从而表明,所提方法对巷道NLOS时延具有较明显的抑制作用,能够提高TOA井下人员定位系统的精确度。展开更多
文摘抗差Kalman滤波是控制GNSS动态导航定位中观测异常的有效算法,当应用到GPS/BDS实时动态精密单点定位(Precise Point Positioning,PPP)时,会出现某些历元定位精度甚至不如单一系统定位精度高,这主要是因为同一接收机接收的不同种类卫星观测量的随机特性不同,使得观测量验后残差的分布特性不一致,抗差估计时随机特性不同的观测量验后残差互比,反而对某一系统优质数据也进行了降权,导致定位结果出现偏差,减弱了GPS/BDS融合精密单点定位的优势。针对这一问题,提出了卫星分群的抗差Kalman滤波算法,并应用到GPS/BDS融合精密单点定位中,算法的核心是在每一历元观测数据质量控制时根据卫星类型分类构建方差膨胀因子,给出了算法的实施步骤,最后通过MGEX实测数据进行了验证,结果表明算法应用到GPS/BDS融合精密单点定位中,相较传统的抗差Kalman滤波算法在东、北、天三个方向分别提高了34.6%、33.3%、31.0%,同时表明该算法提高了GPS/BDS融合精密单点定位的可靠性。
文摘针对矿井巷道NLOS(Non Line Of Sight)时延影响矿井TOA(Time Of Arrival)定位精度的问题,通过分析巷道NLOS时延形成方式,将巷道NLOS时延分为随机和固定两类,结合两类巷道NLSO时延的特性,提出了一种基于自适应抗差卡尔曼滤波的巷道NLOS时延抑制方法。对于巷道随机NLOS时延,通过在经典卡尔曼滤波算法的基础上引入了自适应抗差概念,使系统在线性滤波的基础上增加了对随机脉冲误差的抑制能力;对于巷道固定NLOS时延,通过在巷道NLOS误差模型的基础上,构建巷道中信号传播距离与传播环境间的函数模型,并结合几何定位算法完成系统对固有误差的有效抑制。实验结果显示,包含有巷道NLOS时延的原始定位数据,误差在2.1~8.1 m之间,平均误差为3.7 m;原始数据经自适应抗差卡尔曼滤波算法处理后,误差在1.9~3.6 m之间,平均误差为2.5 m,定位曲线与实际移动曲线基本保持平行;再经参数拟合和几何算法处理,误差在0~1.0 m之间波动,误差平均值为0.27 m,且所提方法较原始定位数据,平均定位误差减小了3.43 m.从而表明,所提方法对巷道NLOS时延具有较明显的抑制作用,能够提高TOA井下人员定位系统的精确度。