To properly simulate hard rock with a high ratio of the uniaxial compressive strength to tensile strength(UCS/TS) and realistic strength-failure envelope,the rock deformation and mechanical characteristics were discus...To properly simulate hard rock with a high ratio of the uniaxial compressive strength to tensile strength(UCS/TS) and realistic strength-failure envelope,the rock deformation and mechanical characteristics were discussed in detail when the particle simulation method with the clump parallel-bond model(CPBM) was used to conduct a series of numerical experiments at the specimen scale.Meanwhile,the effects of the loading procedure and crack density on the mechanical behavior of a specimen,which was modeled by the particle simulation method with the CPBM,were investigated.The related numerical results have demonstrated that:1) The uniaxial compressive strength(UCS),tensile strength(TS) and elastic modulus are overestimated when the conventional loading procedure is used in the particle simulation method with the CPBM; 2) The elastic modulus,strength and UCS/TS decrease,while Poisson ratio increases with the increase of the crack density in the particle simulation method with the CPBM; 3) The particle simulation method with the CPBM can be used to reproduce a high value of UCS/TS(>10),as well as a high friction angle and reasonable cohesion strength; 4) As the confining pressure increases,both the peak strength of the simulated specimen and the number of microscopic cracks increase,but the ratio of tensile cracks number to shear cracks number decreases in the particle simulation method with the CPBM; 5) Compared with the conventional parallel-bond model,the CPBM can be used to reproduce more accurate results for simulating the rock deformation and mechanical characteristics.展开更多
Bauxite tailing(BT)slurry has been generated and accumulated in large quantities,posing a threat to the green and sustainable development of the alumina industry.The regression equation between the actual water conten...Bauxite tailing(BT)slurry has been generated and accumulated in large quantities,posing a threat to the green and sustainable development of the alumina industry.The regression equation between the actual water content and mud water separation rate was established to achieve efficient resource utilization,and the feasibility of foam lightweight soil(FLS)prepared from BT was investigated.The effects of industrial waste residues(fly ash and slag powder)on the properties of FLS were studied.Meanwhile,the micro-mechanisms were revealed by XRD,SEM-EDS,and TG-DSC.The results revealed that fly ash reduced the workability and compressive strength of FLS.Slag powder can significantly enhance the compressive strength of FLS,which increased by 18.60%-23.26%,17.07%-58.54% and 12.12%-52.12%,respectively.Besides,slag powder can improve the long-term water stability performance and enhance carbonation resistance.XRD and thermal analyses showed that adding fly ash decreased the hydration degree of FLS,leading to a decrease in the hydration products.Slag powder improved the pore structure and compacted the skeleton structure of FLS.This study would provide an effective way to realize the resource utilization of BT,fly ash,and slag powder,with certain socio-economic and environmental benefits.展开更多
基金Project(11272359) supported by the National Natural Science Foundation of China
文摘To properly simulate hard rock with a high ratio of the uniaxial compressive strength to tensile strength(UCS/TS) and realistic strength-failure envelope,the rock deformation and mechanical characteristics were discussed in detail when the particle simulation method with the clump parallel-bond model(CPBM) was used to conduct a series of numerical experiments at the specimen scale.Meanwhile,the effects of the loading procedure and crack density on the mechanical behavior of a specimen,which was modeled by the particle simulation method with the CPBM,were investigated.The related numerical results have demonstrated that:1) The uniaxial compressive strength(UCS),tensile strength(TS) and elastic modulus are overestimated when the conventional loading procedure is used in the particle simulation method with the CPBM; 2) The elastic modulus,strength and UCS/TS decrease,while Poisson ratio increases with the increase of the crack density in the particle simulation method with the CPBM; 3) The particle simulation method with the CPBM can be used to reproduce a high value of UCS/TS(>10),as well as a high friction angle and reasonable cohesion strength; 4) As the confining pressure increases,both the peak strength of the simulated specimen and the number of microscopic cracks increase,but the ratio of tensile cracks number to shear cracks number decreases in the particle simulation method with the CPBM; 5) Compared with the conventional parallel-bond model,the CPBM can be used to reproduce more accurate results for simulating the rock deformation and mechanical characteristics.
基金Project(5206800)supported by the National Natural Science Foundation of ChinaProject(2024JJA160096)supported by the Natural Science Foundation of Guangxi Province,China。
文摘Bauxite tailing(BT)slurry has been generated and accumulated in large quantities,posing a threat to the green and sustainable development of the alumina industry.The regression equation between the actual water content and mud water separation rate was established to achieve efficient resource utilization,and the feasibility of foam lightweight soil(FLS)prepared from BT was investigated.The effects of industrial waste residues(fly ash and slag powder)on the properties of FLS were studied.Meanwhile,the micro-mechanisms were revealed by XRD,SEM-EDS,and TG-DSC.The results revealed that fly ash reduced the workability and compressive strength of FLS.Slag powder can significantly enhance the compressive strength of FLS,which increased by 18.60%-23.26%,17.07%-58.54% and 12.12%-52.12%,respectively.Besides,slag powder can improve the long-term water stability performance and enhance carbonation resistance.XRD and thermal analyses showed that adding fly ash decreased the hydration degree of FLS,leading to a decrease in the hydration products.Slag powder improved the pore structure and compacted the skeleton structure of FLS.This study would provide an effective way to realize the resource utilization of BT,fly ash,and slag powder,with certain socio-economic and environmental benefits.