期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于数据融合和改进MoCo的工业机器人抖动原因识别 被引量:4
1
作者 陈仁祥 谢文举 +2 位作者 徐向阳 陈才 张旭 《仪器仪表学报》 EI CAS CSCD 北大核心 2023年第7期112-120,共9页
实际工程中工业机器人受关节控制参数不佳易引起末端抖动,抖动原因识别有助于定位关节异常及优化控制。而工业机器人抖动原因识别存在周期信号冗余度高、抖动方向多及抖动状态样本标签缺失的问题,故提出基于数据融合和改进动量对比学习(... 实际工程中工业机器人受关节控制参数不佳易引起末端抖动,抖动原因识别有助于定位关节异常及优化控制。而工业机器人抖动原因识别存在周期信号冗余度高、抖动方向多及抖动状态样本标签缺失的问题,故提出基于数据融合和改进动量对比学习(MoCo)的工业机器人抖动原因识别方法。首先,对工业机器人末端各传感器数据依次进行数据降维、数据扩充、水平拼接融合及降维,构建充足且全面反映抖动方向及状态信息的融合样本。其中,数据融合前降维可降低周期样本冗余度及提升样本融合效率,数据融合后降维可避免融合样本过长导致模型训练复杂度增加。其次,在MoCo前标记少量融合样本由正编码器分类通道输出监督信息,引导特征聚类。然后,改进对比学习策略,将正编码器提取的无标签融合数据特征与动量编码器保存的负样本特征的聚类中心进行对比,去除特征相似度最高的聚类中心以降低对比类别错误的假负样本干扰。并通过对称调换两个编码器的输入进行两次对比损失计算,完成编码器训练。最后,在编码器分类通道后添加Softmax分类器完成工业机器人抖动原因识别。实验结果表明,所提方法在不同工况的工业机器人抖动原因识别准确率均在90%以上,证明了该方法的有效性。 展开更多
关键词 工业机器人 抖动原因识别 数据融合 对比学习
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部