期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于局部线性嵌入和深度森林算法的电力客户投诉预测模型
被引量:
1
1
作者
张梅
保富
《电测与仪表》
北大核心
2024年第1期107-112,共6页
由于电力市场竞争日益激烈,用户对服务质量的要求不断提高,用户投诉量持续上升。在基于大数据的电力客户投诉预测模型的体系结构基础上,提出一种基于局部线性嵌入和深度森林算法的电力客户投诉预测方法。采用局部线性嵌入算法对客户投...
由于电力市场竞争日益激烈,用户对服务质量的要求不断提高,用户投诉量持续上升。在基于大数据的电力客户投诉预测模型的体系结构基础上,提出一种基于局部线性嵌入和深度森林算法的电力客户投诉预测方法。采用局部线性嵌入算法对客户投诉预测模型的输入特征向量进行降维处理,减少计算量和避免陷入局部最优解;对降维后的投诉预测特征向量进行多粒度扫描,提高其表征学习能力;基于级联森林建立深度森林算法模型,实现客户投诉预测。实际数据的仿真结果表明,与不进行降维处理及其他预测模型相比,文中所提出的预测模型可以更准确地预测客户投诉趋势,为电力企业客户投诉分析和预测提供了参考依据。
展开更多
关键词
电力客户
投诉预测模型
局部线性嵌入
深度森林算法
在线阅读
下载PDF
职称材料
大数据驱动的投诉预测模型
被引量:
12
2
作者
周文杰
杨璐
严建峰
《计算机科学》
CSCD
北大核心
2016年第7期217-223,共7页
随着电信行业市场竞争的不断加剧,用户对服务质量要求逐步提高,导致用户投诉率不断攀升。在此情况下,通过准确预测用户投诉行为来降低用户投诉率成为运营商关注的重点。目前传统的投诉预测模型仅从分类算法和人工调研特征来讨论,而没有...
随着电信行业市场竞争的不断加剧,用户对服务质量要求逐步提高,导致用户投诉率不断攀升。在此情况下,通过准确预测用户投诉行为来降低用户投诉率成为运营商关注的重点。目前传统的投诉预测模型仅从分类算法和人工调研特征来讨论,而没有充分利用运营商的大数据。因此,提出了在Hadoop/Spark大数据平台上使用并行随机森林来构建用户预测投诉模型,它不仅用到了业务支持系统数据,而且还用到了运营支持系统数据和客服工单数据,并在此基础上进一步增加了反映用户相互关系的图特征和二阶特征。基于上海市某运营商数据的实验结果表明,利用多来源、高维度的特征来训练用户投诉预测模型的精度会明显高于传统方法,在此基础上有针对性地对目标用户采取安抚措施,可以降低用户投诉率,获得较高的商业价值。
展开更多
关键词
大数据
投诉预测模型
特征工程
二阶特征
图特征
随机森林
在线阅读
下载PDF
职称材料
题名
基于局部线性嵌入和深度森林算法的电力客户投诉预测模型
被引量:
1
1
作者
张梅
保富
机构
云南电网有限责任公司信息中心
出处
《电测与仪表》
北大核心
2024年第1期107-112,共6页
文摘
由于电力市场竞争日益激烈,用户对服务质量的要求不断提高,用户投诉量持续上升。在基于大数据的电力客户投诉预测模型的体系结构基础上,提出一种基于局部线性嵌入和深度森林算法的电力客户投诉预测方法。采用局部线性嵌入算法对客户投诉预测模型的输入特征向量进行降维处理,减少计算量和避免陷入局部最优解;对降维后的投诉预测特征向量进行多粒度扫描,提高其表征学习能力;基于级联森林建立深度森林算法模型,实现客户投诉预测。实际数据的仿真结果表明,与不进行降维处理及其他预测模型相比,文中所提出的预测模型可以更准确地预测客户投诉趋势,为电力企业客户投诉分析和预测提供了参考依据。
关键词
电力客户
投诉预测模型
局部线性嵌入
深度森林算法
Keywords
power customer
complaint prediction model
local linear embedding
deep forest algorithm
分类号
TM93 [电气工程—电力电子与电力传动]
在线阅读
下载PDF
职称材料
题名
大数据驱动的投诉预测模型
被引量:
12
2
作者
周文杰
杨璐
严建峰
机构
苏州大学计算机科学与技术学院
香港城市大学创意媒体学院
出处
《计算机科学》
CSCD
北大核心
2016年第7期217-223,共7页
基金
国家自然科学基金(61373092
61033013
+3 种基金
61272449
61202029)
江苏省教育厅重大项目(12KJA520004)
江苏省科技支撑计划重点项目(BE2014005)资助
文摘
随着电信行业市场竞争的不断加剧,用户对服务质量要求逐步提高,导致用户投诉率不断攀升。在此情况下,通过准确预测用户投诉行为来降低用户投诉率成为运营商关注的重点。目前传统的投诉预测模型仅从分类算法和人工调研特征来讨论,而没有充分利用运营商的大数据。因此,提出了在Hadoop/Spark大数据平台上使用并行随机森林来构建用户预测投诉模型,它不仅用到了业务支持系统数据,而且还用到了运营支持系统数据和客服工单数据,并在此基础上进一步增加了反映用户相互关系的图特征和二阶特征。基于上海市某运营商数据的实验结果表明,利用多来源、高维度的特征来训练用户投诉预测模型的精度会明显高于传统方法,在此基础上有针对性地对目标用户采取安抚措施,可以降低用户投诉率,获得较高的商业价值。
关键词
大数据
投诉预测模型
特征工程
二阶特征
图特征
随机森林
Keywords
Big data, Complaint prediction model, Feature engineering, Second-order feature, Graph-based features, Random forest
分类号
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于局部线性嵌入和深度森林算法的电力客户投诉预测模型
张梅
保富
《电测与仪表》
北大核心
2024
1
在线阅读
下载PDF
职称材料
2
大数据驱动的投诉预测模型
周文杰
杨璐
严建峰
《计算机科学》
CSCD
北大核心
2016
12
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部