对于无约束优化问题,提出了一类新的三项记忆梯度算法.这类算法是在参数满足某些假设的条件下,确定它的取值范围,从而保证三项记忆梯度方向是使目标函数充分下降的方向.在非单调步长搜索下讨论了算法的全局收敛性.为了得到具有更好...对于无约束优化问题,提出了一类新的三项记忆梯度算法.这类算法是在参数满足某些假设的条件下,确定它的取值范围,从而保证三项记忆梯度方向是使目标函数充分下降的方向.在非单调步长搜索下讨论了算法的全局收敛性.为了得到具有更好收敛性质的算法,结合Solodov and Svaiter(2000)中的部分技巧,提出了一种新的记忆梯度投影算法,并证明了该算法在函数伪凸的情况下具有整体收敛性.展开更多
基金Supported by the National Natural Science Foundation (10961006)Guangxi Education Department Science Foundation (200911LX53)Guangxi Normal University Research Foundation for the Youth Backbone Teacher of China
基金This work is supported by National Natural Science Foundation under Grant No.10571106.
文摘对于无约束优化问题,提出了一类新的三项记忆梯度算法.这类算法是在参数满足某些假设的条件下,确定它的取值范围,从而保证三项记忆梯度方向是使目标函数充分下降的方向.在非单调步长搜索下讨论了算法的全局收敛性.为了得到具有更好收敛性质的算法,结合Solodov and Svaiter(2000)中的部分技巧,提出了一种新的记忆梯度投影算法,并证明了该算法在函数伪凸的情况下具有整体收敛性.