以盖板厚度、配筋率、有无钢框、浇筑方式为变量设计了5块超高性能混凝土(ultra high performance concrete,UHPC)电缆沟盖板并对其进行了加载试验.结果表明:厚度是影响盖板开裂荷载最主要的因素;钢框对盖板抗力性能影响显著,钢框的设...以盖板厚度、配筋率、有无钢框、浇筑方式为变量设计了5块超高性能混凝土(ultra high performance concrete,UHPC)电缆沟盖板并对其进行了加载试验.结果表明:厚度是影响盖板开裂荷载最主要的因素;钢框对盖板抗力性能影响显著,钢框的设置使得开裂荷载提高了24%,随着裂缝的发展,电缆沟盖板的刚度退化十分平稳,裂缝分布更接近于弥散开裂,极限荷载提高了139%.基于抗力试验结果分析,提出了UHPC电缆沟盖板的理论计算模型,经仿真验证,表明计算模型具有较强的适用性.展开更多
To study the flexural behavior and calculation model,8 coral aggregate concrete(CAC)beams with different types of steel were designed.The flexural behavior of CAC beam was tested.The failure mode,bearing capacity,the ...To study the flexural behavior and calculation model,8 coral aggregate concrete(CAC)beams with different types of steel were designed.The flexural behavior of CAC beam was tested.The failure mode,bearing capacity,the maximum crack width(ws)and average crack spacing(lm)were studied.A calculation model for the bearing capacity of CAC beam was proposed.The results indicated that with the steel strength increased,the cracking moment(Mcr)and ultimate moment(Mu)of CAC beam increased,and the development of the ws gradually slowed,which effectively inhibited the formation of cracks and improved the flexural behavior of CAC beam.For CAC structures in the ocean engineering,it is recommended to use organic new coated steel to extend its effective service life.In addition,considering the influence of steel corrosion,a calculation model for the Mcr,Mu,lm and ws of CAC beam was established.展开更多
文摘以盖板厚度、配筋率、有无钢框、浇筑方式为变量设计了5块超高性能混凝土(ultra high performance concrete,UHPC)电缆沟盖板并对其进行了加载试验.结果表明:厚度是影响盖板开裂荷载最主要的因素;钢框对盖板抗力性能影响显著,钢框的设置使得开裂荷载提高了24%,随着裂缝的发展,电缆沟盖板的刚度退化十分平稳,裂缝分布更接近于弥散开裂,极限荷载提高了139%.基于抗力试验结果分析,提出了UHPC电缆沟盖板的理论计算模型,经仿真验证,表明计算模型具有较强的适用性.
基金Projects(11832013,51878350)supported by the National Natural Science Foundation of ChinaProject(B200201063)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(BK20180433)supported by the Natural Science Foundation of Jiangsu Province,China。
文摘To study the flexural behavior and calculation model,8 coral aggregate concrete(CAC)beams with different types of steel were designed.The flexural behavior of CAC beam was tested.The failure mode,bearing capacity,the maximum crack width(ws)and average crack spacing(lm)were studied.A calculation model for the bearing capacity of CAC beam was proposed.The results indicated that with the steel strength increased,the cracking moment(Mcr)and ultimate moment(Mu)of CAC beam increased,and the development of the ws gradually slowed,which effectively inhibited the formation of cracks and improved the flexural behavior of CAC beam.For CAC structures in the ocean engineering,it is recommended to use organic new coated steel to extend its effective service life.In addition,considering the influence of steel corrosion,a calculation model for the Mcr,Mu,lm and ws of CAC beam was established.