The influence of earthquake forces on ultimate bearing capacity of foundations on sloping ground was studied. A solution to seismic ultimate bearing capacity of strip footings on slope was obtained by utilizing pseudo...The influence of earthquake forces on ultimate bearing capacity of foundations on sloping ground was studied. A solution to seismic ultimate bearing capacity of strip footings on slope was obtained by utilizing pseudo-static analysis method and taking the effect of intermediate principal stress into consideration. Based on limit equilibrium theory, the formulae for computing static bearing capacity factors, Nq, Nc, Nγ, and dynamic bearing capacity factors, Nqd, Ned, Nγd, which are associated with surcharge, cohesion and self-weight of soils respectively, were presented. A great number of analysis calculations were carried out to obtain the relationship curves of the static and dynamic bearing capacity factors versus various calculation parameters. The curves can serve as the practical engineering design. The calculation results also show that when the values of horizontal and vertical seismic coefficients are 0.2, the dynamic bearing capacity factors Nqd, Ned and Nγd, in which the effects of intermediate principal stress are taken into consideration, increase by 4%-42%, 3%-27% and 34%-57%, respectively.展开更多
Based on the slip-line field theory, a two-dimensional slip failure mechanism with mesh-like rigid block system was constructed to analyze the ultimate bearing capacity problems of rough foundation within the framewor...Based on the slip-line field theory, a two-dimensional slip failure mechanism with mesh-like rigid block system was constructed to analyze the ultimate bearing capacity problems of rough foundation within the framework of the upper bound limit analysis theorem. In the velocity discontinuities in transition area, the velocity changes in radial and tangent directions are allowed. The objective functions of the stability problems of geotechnical structures are obtained by equating the work rate of external force to internal dissipation along the velocity discontinuities, and then the objective functions are transformed as an upper-bound mathematic optimization model. The upper bound solutions for the objective functions are obtained by use of the nonlinear sequential quadratic programming and interior point method. From the numerical results and comparative analysis, it can be seen that the method presented in this work gives better calculation results than existing upper bound methods and can be used to establish the more accurate plastic collapse load for the ultimate bearing capacity of rough foundation.展开更多
基金Project (05GK3024) supported by the Program of Hunan Provincial Science and Technology
文摘The influence of earthquake forces on ultimate bearing capacity of foundations on sloping ground was studied. A solution to seismic ultimate bearing capacity of strip footings on slope was obtained by utilizing pseudo-static analysis method and taking the effect of intermediate principal stress into consideration. Based on limit equilibrium theory, the formulae for computing static bearing capacity factors, Nq, Nc, Nγ, and dynamic bearing capacity factors, Nqd, Ned, Nγd, which are associated with surcharge, cohesion and self-weight of soils respectively, were presented. A great number of analysis calculations were carried out to obtain the relationship curves of the static and dynamic bearing capacity factors versus various calculation parameters. The curves can serve as the practical engineering design. The calculation results also show that when the values of horizontal and vertical seismic coefficients are 0.2, the dynamic bearing capacity factors Nqd, Ned and Nγd, in which the effects of intermediate principal stress are taken into consideration, increase by 4%-42%, 3%-27% and 34%-57%, respectively.
基金Projects(51078359, 51208522) supported by the National Natural Science Foundation of ChinaProjects(20110491269, 2012T50708) supported by China Postdoctoral Science FoundationProject supported by Postdoctoral Science Foundation of Central South University, China
文摘Based on the slip-line field theory, a two-dimensional slip failure mechanism with mesh-like rigid block system was constructed to analyze the ultimate bearing capacity problems of rough foundation within the framework of the upper bound limit analysis theorem. In the velocity discontinuities in transition area, the velocity changes in radial and tangent directions are allowed. The objective functions of the stability problems of geotechnical structures are obtained by equating the work rate of external force to internal dissipation along the velocity discontinuities, and then the objective functions are transformed as an upper-bound mathematic optimization model. The upper bound solutions for the objective functions are obtained by use of the nonlinear sequential quadratic programming and interior point method. From the numerical results and comparative analysis, it can be seen that the method presented in this work gives better calculation results than existing upper bound methods and can be used to establish the more accurate plastic collapse load for the ultimate bearing capacity of rough foundation.