期刊文献+
共找到50篇文章
< 1 2 3 >
每页显示 20 50 100
基于改进GAN的人机交互手势行为识别方法
1
作者 张富强 白筠妍 穆慧 《郑州大学学报(工学版)》 北大核心 2025年第2期43-50,共8页
为改善现有手势识别算法需要大量训练数据的现状,针对识别准确率不高、识别过程复杂等问题,基于生成式对抗网络(GAN)和变分自编码器,引入标签信息,提出一种基于改进GAN模型的人机交互手势行为识别方法。首先,在编码器和解码器中分别添... 为改善现有手势识别算法需要大量训练数据的现状,针对识别准确率不高、识别过程复杂等问题,基于生成式对抗网络(GAN)和变分自编码器,引入标签信息,提出一种基于改进GAN模型的人机交互手势行为识别方法。首先,在编码器和解码器中分别添加改进InceptionV2和InceptionV2-trans结构增强模型的特征还原能力;其次,在各组成网络中进行条件批量归一化(CBN)处理改善过拟合,以Mish激活函数代替ReLU函数提升网络性能;最后,通过实验证明该方法能够以较少的样本获得100%的分类准确率,且收敛时间短,验证了该方法的可靠性。 展开更多
关键词 人机交互 生成对抗网络 变分自编码器 手势识别 条件批量归一化
在线阅读 下载PDF
深度学习批归一化及其相关算法研究进展 被引量:87
2
作者 刘建伟 赵会丹 +1 位作者 罗雄麟 许鋆 《自动化学报》 EI CSCD 北大核心 2020年第6期1090-1120,共31页
深度学习已经广泛应用到各个领域,如计算机视觉和自然语言处理等,并都取得了明显优于早期机器学习算法的效果.在信息技术飞速发展的今天,训练数据逐渐趋于大数据集,深度神经网络不断趋于大型化,导致训练越来越困难,速度和精度都有待提升... 深度学习已经广泛应用到各个领域,如计算机视觉和自然语言处理等,并都取得了明显优于早期机器学习算法的效果.在信息技术飞速发展的今天,训练数据逐渐趋于大数据集,深度神经网络不断趋于大型化,导致训练越来越困难,速度和精度都有待提升.2013年,Ioffe等指出训练深度神经网络过程中存在一个严重问题:中间协变量迁移(Internal covariate shift),使网络训练过程对参数初值敏感、收敛速度变慢,并提出了批归一化(Batch normalization,BN)方法,以减少中间协变量迁移问题,加快神经网络训练过程收敛速度.目前很多网络都将BN作为一种加速网络训练的重要手段,鉴于BN的应用价值,本文系统综述了BN及其相关算法的研究进展.首先对BN的原理进行了详细分析.BN虽然简单实用,但也存在一些问题,如依赖于小批量数据集的大小、训练和推理过程对数据处理方式不同等,于是很多学者相继提出了BN的各种相关结构与算法,本文对这些结构和算法的原理、优势和可以解决的主要问题进行了分析与归纳.然后对BN在各个神经网络领域的应用方法进行了概括总结,并且对其他常用于提升神经网络训练性能的手段进行了归纳.最后进行了总结,并对BN的未来研究方向进行了展望. 展开更多
关键词 归一化 白化 中间协变量迁移 随机梯度下降 归一化传播 批量归一化 逐步归纳批量归一化 归一化
在线阅读 下载PDF
基于改进的ResNet网络和特征融合的目标跟踪算法
3
作者 孟伟君 孙思维 马素刚 《现代电子技术》 北大核心 2025年第13期105-112,共8页
为了增强利用残差网络提取的目标特征,在ATOM50算法基础上提出了一种基于改进的ResNet网络和特征融合的目标跟踪算法。在ResNet-50骨干网络中使用结合无批处理归一化和位置感知循环卷积的增强瓶颈块,有效增强了全局信息的捕获能力,并减... 为了增强利用残差网络提取的目标特征,在ATOM50算法基础上提出了一种基于改进的ResNet网络和特征融合的目标跟踪算法。在ResNet-50骨干网络中使用结合无批处理归一化和位置感知循环卷积的增强瓶颈块,有效增强了全局信息的捕获能力,并减缓了跟踪过程中的偏移累积;对提取的特征采用注意力特征融合模块,通过融合浅层特征的细节和深层特征的语义信息,进一步增强特征对目标的表达能力。利用OTB2015、VOT2018和LaSOT数据集对所提算法进行验证,在OTB2015上成功率和精确度分别达到了70.2%和91.1%,与基准算法ATOM50相比,成功率和精确度分别提升了1.2%和1.5%;在VOT2018数据集上,期望平均重叠率提升了4.4%;在LaSOT数据集上,成功率和精确度分别提升了2.4%和2.9%;在OTB2015数据集上的平均跟踪速度达到34.3 f/s,确保了实时跟踪。 展开更多
关键词 深度学习 视觉跟踪 Siamese网络 批量归一化 注意力机制 改进ResNet网络
在线阅读 下载PDF
基于改进CNN-SVM和机器视觉的苹果自动分级方法研究
4
作者 张瑞琪 杨宁 张一枫 《食品与机械》 北大核心 2025年第9期75-81,共7页
[目的]解决现有苹果自动分级方法存在的分级精度差和效率低等问题。[方法]在基于机器视觉的苹果自动分级系统基础上,提出一种结合卷积神经网络、全局平均池化、批量归一化和支持向量机的苹果自动分级方法。通过全局平均池化,降低模型参... [目的]解决现有苹果自动分级方法存在的分级精度差和效率低等问题。[方法]在基于机器视觉的苹果自动分级系统基础上,提出一种结合卷积神经网络、全局平均池化、批量归一化和支持向量机的苹果自动分级方法。通过全局平均池化,降低模型参数量。通过批量归一化技术提高模型的泛化能力。通过支持向量机替换卷积神经网络的Softmax分类器,提高分类的准确性,并进行验证实验。[结果]与常规的苹果分级方法相比,试验方法在苹果自动分级中具有更高的检测准确和效率,分级准确率达到98.50%,分级速度达到209帧/s,满足食品加工自动化要求。[结论]通过优化现有苹果自动分级方法,在一定程度上提高了检测性能。 展开更多
关键词 苹果 自动分级 卷积神经网络 支持向量机 全局平均池化 批量归一化
在线阅读 下载PDF
基于自适配归一化的改进Mask Scoring R-CNN 被引量:2
5
作者 张幸 赵文仓 王旭 《电子测量技术》 2020年第6期93-98,共6页
基于批量归一化的mask scoring R-CNN在目标检测与实例分割领域展现出卓越性能,其平均精度明显高于传统实例分割模型Mask R-CNN。但是由于批量归一化方法存在小批量精度骤降和大批量GPU内存溢出的缺陷,影响到实际应用中的检测与分割任... 基于批量归一化的mask scoring R-CNN在目标检测与实例分割领域展现出卓越性能,其平均精度明显高于传统实例分割模型Mask R-CNN。但是由于批量归一化方法存在小批量精度骤降和大批量GPU内存溢出的缺陷,影响到实际应用中的检测与分割任务效果。自适配归一化方法对各批量大小都有极佳的鲁棒性,可以弥补上述不足。从数学角度给出了减少自适配归一化中计算冗余的证明,并将其应用于mask scoring R-CNN,小批量条件下在COCO数据集内将检测精度提升了4.4%,分割精度提升了3.9%,进一步提升了模型性能。 展开更多
关键词 自适配归一化 批量归一化 目标检测 实例分割
在线阅读 下载PDF
融合Inception V1-CBAM-CNN的轴承剩余寿命预测模型 被引量:8
6
作者 余江鸿 彭雄露 +2 位作者 刘涛 杨文 叶帅 《机电工程》 北大核心 2024年第1期107-114,共8页
针对现有的滚动轴承剩余寿命(RUL)预测方法精度低、轴承健康指标(HI)构建困难等问题,提出了一种基于卷积神经网络(CNN)并融合Inception V1模块和卷积注意力机制模块(CBAM)的滚动轴承RUL预测模型。首先,在CNN中添加了CBAM机制,并进行了... 针对现有的滚动轴承剩余寿命(RUL)预测方法精度低、轴承健康指标(HI)构建困难等问题,提出了一种基于卷积神经网络(CNN)并融合Inception V1模块和卷积注意力机制模块(CBAM)的滚动轴承RUL预测模型。首先,在CNN中添加了CBAM机制,并进行了加权处理,在通道和空间维度对重要特征进行了强化,对次要特征进行了抑制,通过添加改进的InceptionV1模块,提高了CNN通道间信息交互水平,全面提取了退化特征;然后,进行了网络优化,采用全局最大池化(GMP)方法对模型进行了简化,采用Dropout和批量归一化(BN)方法,避免了过拟合,提高了精度,且克服了训练时出现的梯度消失问题;最后,对数据进行了处理,将降噪后的信号重组为三维张量,将其作为HI,构建了退化标签,引入了评价指标,采用PHM2012轴承数据集进行了实验验证,在3种工况下将其与深度神经网络(DNN)、CNN方法、结合注意力机制的残差网络方法(ResNet)进行了对比。研究结果表明:该方法在变负载条件下的平均RMSE为0.033,较其他方法的RMSE值分别降低了86%、78%和69%,在预测精度和泛化能力方面具有明显优势。 展开更多
关键词 滚动轴承 剩余使用寿命 Inception V1模块 卷积注意力机制模块 卷积神经网络 全局最大池化 批量归一化
在线阅读 下载PDF
基于投影权值归一化的立体图像质量评价方法
7
作者 李素梅 王明毅 +1 位作者 赵平 秦龙斌 《天津大学学报(自然科学与工程技术版)》 EI CSCD 北大核心 2020年第3期252-258,共7页
本文基于深度卷积神经网络和融合图像提出了一种引入投影权值归一化的立体图像质量评价方法.首先基于人眼双目竞争现象,提出对经过Gabor滤波后的左右视点图像进行彩色融合,从而得到单幅融合图像.卷积神经网络的输入即为预处理后的融合图... 本文基于深度卷积神经网络和融合图像提出了一种引入投影权值归一化的立体图像质量评价方法.首先基于人眼双目竞争现象,提出对经过Gabor滤波后的左右视点图像进行彩色融合,从而得到单幅融合图像.卷积神经网络的输入即为预处理后的融合图像,通过卷积层自主对图像特征进行提取,采用池化层对特征信息降维,保留显著特征且减小网络计算复杂度;采用Re LU非线性激活函数缓解梯度消失,有效缓解了网络过拟合问题;网络引入数据批量归一化来规范各层输入数据的分布,引入投影权值归一化来保证权值参数的量级相同,有效地提升了算法的性能.本文在公开的立体图像库LIVE-Ⅰ和LIVE-Ⅱ上进行了实验.实验结果表明,本文方法在对称失真与非对称失真的立体图像质量评价上均具有较好的性能. 展开更多
关键词 立体图像质量评价 卷积神经网络 投影权值归一化 数据批量归一化
在线阅读 下载PDF
基于YOLOv5s的织物缺陷实时检测算法 被引量:3
8
作者 吉训生 钱富 董越 《激光杂志》 CAS 北大核心 2024年第10期47-55,共9页
在织物工业化生产过程中,织物缺陷种类繁多,且包含大量小目标缺陷和极端宽高比的细长缺陷,这使得织物缺陷检测成为了一项具有挑战性的任务。针对这一问题,提出了一种改进的YOLOv5s算法。首先改进Mosaic数据增强方法,在丰富数据集的同时... 在织物工业化生产过程中,织物缺陷种类繁多,且包含大量小目标缺陷和极端宽高比的细长缺陷,这使得织物缺陷检测成为了一项具有挑战性的任务。针对这一问题,提出了一种改进的YOLOv5s算法。首先改进Mosaic数据增强方法,在丰富数据集的同时,削弱了原数据增强方法对部分织物缺陷类型检测的副作用,提升了小目标与极端宽高比瑕疵的检测能力。再改进批量归一化为代表性批量归一化,提升算法对纷繁多样的瑕疵实例的差异化特征表达并抑制噪声干扰;最后引入轻量化的坐标注意力,以精准的位置信息编码了特征的长距离依赖关系和通道依赖关系,增强算法对缺陷的定位能力。实验结果表明,本算法大幅提高了小目标与极端宽高比缺陷的检测能力,使得平均检测精度mAP达到81.3,相比原YOLOv5s提升了4.1%,检测速度为32.6 fps,完全满足实时性要求,本算法较好地平衡了检测精度与检测速度。 展开更多
关键词 小目标检测 YOLOv5s 批量归一化 数据增强 坐标注意力
在线阅读 下载PDF
基于SVDD与VGG的纽扣表面缺陷检测 被引量:2
9
作者 樊鑫江 佟强 +2 位作者 杨大利 侯凌燕 梁旭 《计算机工程与设计》 北大核心 2024年第3期918-924,共7页
为解决纽扣表面缺陷检测中人工效率低下,且无需对纽扣表面瑕疵进行分类的问题,提出一种基于DEEP SVDD与改进VGG16的纽扣表面缺陷检测模型。在VGG16中增加BN层加快网络收敛;为提升网络特征提取能力引入SE注意力模块;使用全局平局池化替... 为解决纽扣表面缺陷检测中人工效率低下,且无需对纽扣表面瑕疵进行分类的问题,提出一种基于DEEP SVDD与改进VGG16的纽扣表面缺陷检测模型。在VGG16中增加BN层加快网络收敛;为提升网络特征提取能力引入SE注意力模块;使用全局平局池化替代全连接层,减少模型参数量,使模型更加健壮。实验结果表明,改进后的模型在DEEP SVDD中的两种方法软边界及一类方法的AUC值分别提升7.7%、5.9%,均高于96%,单张检测时间仅4.5 ms,模型性能满足实际要求。 展开更多
关键词 纽扣表面检测 深度支持向量数据描述 VGG16网络模型 注意力机制 全局平均池化层 批量归一化 深度学习
在线阅读 下载PDF
基于URP-ANCNN的变转速齿轮箱智能故障诊断方法 被引量:7
10
作者 陈向民 舒文伊 +2 位作者 韩梦茹 张亢 李博 《噪声与振动控制》 CSCD 北大核心 2024年第2期129-135,共7页
由于齿轮箱振动信号在变转速工况下出现的调频、调幅等现象,使得信号征兆与故障模式之间的映射关系变得复杂,导致齿轮箱故障难以精确诊断。鉴于深度神经网络在自动提取数据特征和分类上的优势,提出一种基于无阈值递归图编码(Un-threshol... 由于齿轮箱振动信号在变转速工况下出现的调频、调幅等现象,使得信号征兆与故障模式之间的映射关系变得复杂,导致齿轮箱故障难以精确诊断。鉴于深度神经网络在自动提取数据特征和分类上的优势,提出一种基于无阈值递归图编码(Un-threshold Recurrence Plot,URP)和自适应归一化卷积神经网络(Adaptive Normalized Convolutional Neural Network,ANCNN)的变转速工况齿轮箱故障诊断方法。该方法先使用快速傅里叶变换(Fast Fourier Transform,FFT)将时域信号转化为频域信号,再利用URP编码将得到的频域信号转化为二维递归图,并提取图像特征输入到ANCNN模型。在ANCNN模型中,采用批量归一化算法消除因转速变化引起的特征分布差异,同时处理转速波动下产生的频移和调制特性,并使用遗传算法自动调整该网络模型的超参数,以提高该网络的整体性能。采用转速波动的齿轮箱试验数据对该方法进行验证,实验结果表明,该方法能够克服转速波动的影响,成功实现对不同齿轮故障的准确识别。 展开更多
关键词 故障诊断 卷积神经网络 无阈值递归图 批量归一化 变转速工况 齿轮箱
在线阅读 下载PDF
基于SimAM注意力机制的轴承故障迁移诊断模型 被引量:6
11
作者 包从望 朱广勇 +1 位作者 邹旺 郭灏 《机电工程》 CAS 北大核心 2024年第5期862-869,893,共9页
针对轴承故障在跨工况迁移诊断时,其域不变特征难以提取,易出现模型过拟合这一问题,提出了一种基于无参数注意力模块(SimAM)的轴承故障迁移诊断方法。首先,以一维卷积神经网络作为基本框架,利用自适应批量归一化(AdaBN)对各输出层进行... 针对轴承故障在跨工况迁移诊断时,其域不变特征难以提取,易出现模型过拟合这一问题,提出了一种基于无参数注意力模块(SimAM)的轴承故障迁移诊断方法。首先,以一维卷积神经网络作为基本框架,利用自适应批量归一化(AdaBN)对各输出层进行了归一化处理,经两层卷积层和两层池化层后,对输出特征进行了随机节点失活操作;然后,利用改进后的参数化修正线性单元(PReLU)激活函数自适应提取负值输入权值系数,分别以交叉熵损失函数监督训练有标签的源域数据,以均方对数误差(MSLE)作为损失函数训练无标签的目标数据;最后,利用自制实验台数据和凯斯西储轴承公开数据对模型进行了验证,分别以不同的单一工况作为源域,其余工况作为目标域进行了迁移诊断任务研究。研究结果表明:基于SimAM的轴承故障迁移诊断方具有较好的域不变特征提取的性能,且所提特征具有较好的聚类效果;自制实验台中的平均迁移精度在89.1%以上,最高均值可达97.85%,CWRU数据集中的平均迁移精度达98.68%。该成果可为后续轴承故障由实验向工业现场的迁移诊断奠定基础。 展开更多
关键词 轴承故障诊断 迁移学习 无参数注意力机制 自适应批量归一化 参数化修正线性单元 均方对数误差 卷积神经网络
在线阅读 下载PDF
基于多尺度特征融合和多头自注意力机制的非侵入式负荷监测 被引量:3
12
作者 徐瑞琪 刘丹丹 《科学技术与工程》 北大核心 2024年第6期2385-2395,共11页
针对目前负荷分解模型的深层负荷特征提取不充分,分解精度低以及训练成本高等问题,提出了一种多尺度特征融合模型。模型由负荷分解子网络及负荷识别子网络两部分构成,两个子网络均利用一维卷积和批量归一化等组成的卷积块进行负荷特征... 针对目前负荷分解模型的深层负荷特征提取不充分,分解精度低以及训练成本高等问题,提出了一种多尺度特征融合模型。模型由负荷分解子网络及负荷识别子网络两部分构成,两个子网络均利用一维卷积和批量归一化等组成的卷积块进行负荷特征初提取,然后采用金字塔池化模块从多个维度精确提取深层负荷特征信息,并与特征初提取部分进行融合。金字塔池化模块使网络参数大大减少且降低了训练成本。同时与以往模型中的注意力机制不同的是,网络引入多头自注意力机制,每个注意力关注负荷特征的不同部分,从多个角度实现对重要负荷特征的筛选,进一步提高分解性能。最后,在UK-DALE和REDD数据集上进行实验,结果表明所提模型与4个基准模型相比,无论是负荷分解性能还是电器运行状态识别能力都有明显提升。 展开更多
关键词 非侵入式负荷监测 多尺度特征融合 金字塔池化 批量归一化 多头自注意力机制 状态识别
在线阅读 下载PDF
基于优化卷积神经网络结构的交通标志识别 被引量:19
13
作者 王晓斌 黄金杰 刘文举 《计算机应用》 CSCD 北大核心 2017年第2期530-534,共5页
现有算法对交通标志进行识别时,存在训练时间短但识别率低,或识别率高但训练时间长的问题。为此,综合批量归一化(BN)方法、逐层贪婪预训练(GLP)方法,以及把分类器换成支持向量机(SVM)这三种方法对卷积神经网络(CNN)结构进行优化,提出基... 现有算法对交通标志进行识别时,存在训练时间短但识别率低,或识别率高但训练时间长的问题。为此,综合批量归一化(BN)方法、逐层贪婪预训练(GLP)方法,以及把分类器换成支持向量机(SVM)这三种方法对卷积神经网络(CNN)结构进行优化,提出基于优化CNN结构的交通标志识别算法。其中:BN方法可以用来改变中间层的数据分布情况,把卷积层输出数据归一化为均值为0、方差为1,从而提高训练收敛速度,减少训练时间;GLP方法则是先训练第一层卷积网络,训练完把参数保留,继续训练第二层,保留参数,直到把所有卷积层训练完毕,这样可以有效提高卷积网络识别率;SVM分类器只专注于那些分类错误的样本,对已经分类正确的样本不再处理,从而提高了训练速度。使用德国交通标志识别数据库进行训练和识别,新算法的训练时间相对于传统CNN训练时间减少了20.67%,其识别率达到了98.24%。所提算法通过对传统CNN结构进行优化,极大地缩短了训练时间,并具有较高的识别率。 展开更多
关键词 卷积神经网络 批量归一化 贪婪预训练 支持向量机
在线阅读 下载PDF
基于中心损失-改进卷积自编码器的滚动轴承半监督故障诊断 被引量:8
14
作者 齐咏生 巩育瑞 +2 位作者 高胜利 刘利强 李永亭 《振动与冲击》 EI CSCD 北大核心 2023年第7期301-311,共11页
当前基于深度学习的旋转机械故障诊断技术,凭借其强大的逐层加工和内置特征变换功能受到广泛关注,然而传统用于故障诊断的深度网络需要大量标签数据,且诊断结果依赖于标签的数量和准确性。为此,提出一种基于中心损失-改进卷积自编码器(c... 当前基于深度学习的旋转机械故障诊断技术,凭借其强大的逐层加工和内置特征变换功能受到广泛关注,然而传统用于故障诊断的深度网络需要大量标签数据,且诊断结果依赖于标签的数量和准确性。为此,提出一种基于中心损失-改进卷积自编码器(center loss-improved convolutional auto-encoder, CL-ICAE)的半监督故障诊断方法。该方法首先利用连续小波变换将故障信号转换为时频图,细化故障特征表征;之后构建改进的卷积自编码器网络结构,并引入批量归一化(batch normalization, BN)和Dropout,在特征提取阶段防止过拟合;之后在分类阶段,通过将中心损失(center loss)引入Softmax损失函数,构建联合损失函数,使故障特征实现类内距离更小,特征差异更大,进一步提高分类精度。最后,将所提方法通过凯斯西储大学轴承数据集和轴承故障试验平台进行验证,结果表明在少量标签样本情况下,均可实现有效的故障诊断,提升诊断准确率。 展开更多
关键词 滚动轴承 卷积自编码器 半监督 批量归一化(BN) 中心损失(CL)
在线阅读 下载PDF
基于深层特征融合的行人重识别方法 被引量:7
15
作者 熊炜 熊子婕 +3 位作者 杨荻椿 童磊 刘敏 曾春艳 《计算机工程与科学》 CSCD 北大核心 2020年第2期358-364,共7页
针对现有基于深度学习的行人重识别方法对于行人姿态变化、部分遮挡等引起的行人判别特征信息缺失的问题,提出了一种深层特征融合的行人重识别方法。首先,利用卷积层和池化层多次提取网络深层特征,从空间维度提升网络性能,使用融合后的... 针对现有基于深度学习的行人重识别方法对于行人姿态变化、部分遮挡等引起的行人判别特征信息缺失的问题,提出了一种深层特征融合的行人重识别方法。首先,利用卷积层和池化层多次提取网络深层特征,从空间维度提升网络性能,使用融合后的深层特征作为行人图像的全局特征属性;其次,为提高模型的泛化能力,在深层融合特征后加入一个批量归一化层,同时采用标签平滑损失函数和三元组损失函数对模型进行联合训练。实验结果表明,所提的深层特征融合方法具有很好的表达能力。在Market1501、DukeMTMC-reID、CUHK03和MSMT174个数据集上对所提方法进行了验证,其中在Market1501数据集上,Rank-1值达到了95.0%,mAP达到了85.6%。 展开更多
关键词 行人重识别 深层特征融合 Se-resnet50 批量归一化 标签平滑损失 三元组损失
在线阅读 下载PDF
煤矿探水卸杆动作识别研究 被引量:7
16
作者 党伟超 姚远 +2 位作者 白尚旺 高改梅 吴喆峰 《工矿自动化》 北大核心 2020年第7期107-112,共6页
针对煤矿井下探水作业监工人员通过观看视频来监控卸杆作业的方式存在效率低下且极易出错的问题,提出利用三维卷积神经网络(3DCNN)模型对探水作业中的卸杆动作进行识别。3DCNN模型使用3D卷积层自动完成动作特征提取,通过3D池化层对运动... 针对煤矿井下探水作业监工人员通过观看视频来监控卸杆作业的方式存在效率低下且极易出错的问题,提出利用三维卷积神经网络(3DCNN)模型对探水作业中的卸杆动作进行识别。3DCNN模型使用3D卷积层自动完成动作特征提取,通过3D池化层对运动特征进行降维,通过Softmax分类处理来识别卸杆动作,并使用批量归一化层提高模型的收敛速度和识别准确率。采用3DCNN模型对卸杆动作进行识别时,首先对数据集进行预处理,从每段视频中均匀抽取几帧图像作为某动作的代表,并降低分辨率;然后采用训练集对3DCNN模型进行训练,并保存训练好的权重文件;最后采用训练好的3DCNN模型对测试集进行测试,得出分类结果。实验结果表明,设置采样帧数为10帧、分辨率为32×32、学习率为0.0001,3DCNN模型对卸杆动作的识别准确率最高可达98.86%。 展开更多
关键词 煤矿防治水 煤矿探水 卸杆动作识别 三维卷积神经网络 3DCNN 批量归一化
在线阅读 下载PDF
基于条件生成对抗网络的手写数字识别 被引量:13
17
作者 王爱丽 薛冬 +1 位作者 吴海滨 王敏慧 《液晶与显示》 CAS CSCD 北大核心 2020年第12期1284-1290,共7页
针对当训练样本不足时,传统深度学习算法在手写数字识别中会出现训练不稳定、识别精度较低等问题,提出了基于条件生成对抗网络的识别方法。首先,在条件生成对抗网络的基础上,利用生成器使用类别标签控制图像生成的优点,将生成器产生的... 针对当训练样本不足时,传统深度学习算法在手写数字识别中会出现训练不稳定、识别精度较低等问题,提出了基于条件生成对抗网络的识别方法。首先,在条件生成对抗网络的基础上,利用生成器使用类别标签控制图像生成的优点,将生成器产生的图像样本作为训练数据,扩充数据集。同时,利用反卷积网络和卷积网络分别构成生成器和判别器的网络结构,去掉全连接层以提升模型稳定性。然后,引入条件批量归一化,利用它使用类别标签的优点,使网络学习更多的特征。最后,改进判别器为分类器,并提出新的损失函数,加快收敛速度,提高识别精度。实验结果表明,本文所提出的手写数字识别方法生成的图像质量更好,识别准确率更高,达到99.43%,为生成对抗网络及其变体在图像识别领域中的应用提供了参考。 展开更多
关键词 手写数字识别 条件生成对抗网络 条件批量归一化 图像生成
在线阅读 下载PDF
基于AE-BNDNN模型的入侵检测方法 被引量:8
18
作者 江颉 高甲 陈铁明 《小型微型计算机系统》 CSCD 北大核心 2019年第8期1713-1717,共5页
基于深度学习的网络入侵检测系统中大量的冗余数据特征会加大模型的训练时间并降低训练效果,针对此问题,提出了AE-BNDNN入侵检测模型.首先利用自编码器网络(Auto-Encoder,AE)对入侵检测数据进行特征降维,去除冗余特征,而后在深度神经网... 基于深度学习的网络入侵检测系统中大量的冗余数据特征会加大模型的训练时间并降低训练效果,针对此问题,提出了AE-BNDNN入侵检测模型.首先利用自编码器网络(Auto-Encoder,AE)对入侵检测数据进行特征降维,去除冗余特征,而后在深度神经网络隐藏层添加批量规范化层,作为训练入侵检测数据特征降维后的分类器,最后采用多层网格搜索算法对AEBNDNN模型参数进行自动优化,寻找模型的最优参数.在NSL-KDD数据集上的实验结果表明,采用多层网格搜索算法优化的AE-BNDNN模型取得了较高的分类准确率和训练速度. 展开更多
关键词 入侵检测 自编码器 深度神经网络 批量归一化 网格搜索
在线阅读 下载PDF
结合优化U-Net和残差学习的细胞膜分割 被引量:5
19
作者 杨云 张立泽清 齐勇 《计算机工程与设计》 北大核心 2019年第11期3313-3318,共6页
为提高果蝇第一龄幼虫腹侧神经索切片图像细胞膜分割精度,实现更为高效的自动化细胞膜分割,提出一种利用批量归一化优化并结合残差学习对图像分割精度进行提升的改进全卷积神经网络U-Net (ResU-Net)。将批量归一化(batch normalization,... 为提高果蝇第一龄幼虫腹侧神经索切片图像细胞膜分割精度,实现更为高效的自动化细胞膜分割,提出一种利用批量归一化优化并结合残差学习对图像分割精度进行提升的改进全卷积神经网络U-Net (ResU-Net)。将批量归一化(batch normalization,BN)应用在每一网络模块输出,减少网络内部协变量转移加速网络收敛;为丰富网络特征提取防止梯度消失,采用残差结构对特征进行映射并提升分割准确率。实验结果表明,相比较改进前的U-Net,该深度学习方法具有良好的泛化能力和较高的准确性。 展开更多
关键词 细胞膜分割 批量归一化 残差学习 全卷积神经网络 深度学习
在线阅读 下载PDF
基于残差神经网络的转子焊点图像检测方法 被引量:3
20
作者 邓仕超 张延儒 +3 位作者 高兴宇 刘平 黄海兰 杨家欣 《科学技术与工程》 北大核心 2020年第19期7793-7797,共5页
针对微型电机转子焊点检测费时费力且准确率低的问题,提出一种基于残差神经网络的转子焊点检测方法。首先运用网络预训练的方法加速网络训练,提高模型准确率;然后在网络中引入批量归一化,避免出现梯度消失;最后对图像进行数据增强,减少... 针对微型电机转子焊点检测费时费力且准确率低的问题,提出一种基于残差神经网络的转子焊点检测方法。首先运用网络预训练的方法加速网络训练,提高模型准确率;然后在网络中引入批量归一化,避免出现梯度消失;最后对图像进行数据增强,减少过拟合现象。实验表明,与K最近邻(KNN)等经典算法相比,该算法在测试集上的准确率达到91.5%,与工人检测的速度相比提高了3.5倍,具有很好的识别效果。 展开更多
关键词 转子焊点 残差神经网络 预训练 批量归一化
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部