对于电动静液作动器(Electro-Hydrostatic Actuator,EHA),传统扰动主动补偿控制方法(Active Disturbance Compensation Control Method,ADCM)存在扩张状态观测器(Extended State Obsever,ESO)对噪声敏感、控制器设计需要作动加速度信息...对于电动静液作动器(Electro-Hydrostatic Actuator,EHA),传统扰动主动补偿控制方法(Active Disturbance Compensation Control Method,ADCM)存在扩张状态观测器(Extended State Obsever,ESO)对噪声敏感、控制器设计需要作动加速度信息的问题。针对以上问题,首先利用奇异摄动理论对EHA数学模型进行合理降阶,然后设计了一种基于滤波估计器(Filter Estimator,FE)的串级扰动估计器。此外,在控制器中加入阻尼自适应函数,设计了阻尼自适应扰动主动补偿控制器(FE-AD-ADCM),从而提高了系统的位置跟踪性能。最后,利用MATLAB/Simulink和Simcenter/AMESim联合仿真平台将该方法分别与传统PI和ADCM控制器进行了详细的仿真对比分析。仿真结果表明,提出的FE-AD-ADCM能有效提升EHA位置跟踪性能和对扰动的估计精度。展开更多
为解决船舶在外界扰动和模型不确定条件下自动靠泊控制精度降低的问题,基于不确定和扰动估计器(uncertainty and disturbance estimator,UDE),提出一种自适应反步控制方法。利用指令滤波器,抑制传统反步法虚拟控制求导产生的微分爆炸现...为解决船舶在外界扰动和模型不确定条件下自动靠泊控制精度降低的问题,基于不确定和扰动估计器(uncertainty and disturbance estimator,UDE),提出一种自适应反步控制方法。利用指令滤波器,抑制传统反步法虚拟控制求导产生的微分爆炸现象。通过设计辅助系统,补偿指令滤波器误差,达到三自由度船舶自动靠泊控制的目的。通过Lyapunov理论证明UDE与控制器相结合的闭环系统的稳定性和信号的一致最终有界性。仿真实验表明,所设计的控制器能较准确地估计复杂扰动,并保证船舶到达期望的位置和艏向。展开更多
文摘对于电动静液作动器(Electro-Hydrostatic Actuator,EHA),传统扰动主动补偿控制方法(Active Disturbance Compensation Control Method,ADCM)存在扩张状态观测器(Extended State Obsever,ESO)对噪声敏感、控制器设计需要作动加速度信息的问题。针对以上问题,首先利用奇异摄动理论对EHA数学模型进行合理降阶,然后设计了一种基于滤波估计器(Filter Estimator,FE)的串级扰动估计器。此外,在控制器中加入阻尼自适应函数,设计了阻尼自适应扰动主动补偿控制器(FE-AD-ADCM),从而提高了系统的位置跟踪性能。最后,利用MATLAB/Simulink和Simcenter/AMESim联合仿真平台将该方法分别与传统PI和ADCM控制器进行了详细的仿真对比分析。仿真结果表明,提出的FE-AD-ADCM能有效提升EHA位置跟踪性能和对扰动的估计精度。
文摘为解决船舶在外界扰动和模型不确定条件下自动靠泊控制精度降低的问题,基于不确定和扰动估计器(uncertainty and disturbance estimator,UDE),提出一种自适应反步控制方法。利用指令滤波器,抑制传统反步法虚拟控制求导产生的微分爆炸现象。通过设计辅助系统,补偿指令滤波器误差,达到三自由度船舶自动靠泊控制的目的。通过Lyapunov理论证明UDE与控制器相结合的闭环系统的稳定性和信号的一致最终有界性。仿真实验表明,所设计的控制器能较准确地估计复杂扰动,并保证船舶到达期望的位置和艏向。