In order to study reasonable sintering technological parameters and appropriate copper powder size range of micro heat pipe (MHP) with the sintered wick, the forming principle of copper powders in wicks and MHP's ...In order to study reasonable sintering technological parameters and appropriate copper powder size range of micro heat pipe (MHP) with the sintered wick, the forming principle of copper powders in wicks and MHP's heat transfer capabilities were first analyzed, then copper powders with different cell sizes and dispersions were sintered in RXL-12-11 resistance furnace under the protection of the hydrogen at different sintering temperatures for different durations of sintering time, and finally the sintered wicks' scanning electron microscope (SEM) images and their heat transfer capabilities were analyzed. The results indicate that the wick sintered with copper powders of larger cell size or smaller size range has better sintering properties and larger heat transfer capabilities; and that the increase of either sintering temperatures or sintering time also helps to improve the wick's sintering properties and heat transfer capabilities, and the former affects more obviously than the latter. Considering both its manufacturing cost and performance requirements, it is recommended that copper powders with the size range of 140-170 μm are sintered at 900-950℃ for 30-60 min in practical manufacturing. In addition, two approaches to improve wick's porosity are also proposed through theoretical analysis, which suggests that the larger the wick's porosity, the better the heat transfer capabilities of the MHP.展开更多
The effects of alkali oxides (Na2O and K2O addition on both the sintering behavior and dielectric properties of Ca-AI-B-Si-O glass/Al2O3 composites were investigated by Fourier transform infrared spectroscopy (FTIR...The effects of alkali oxides (Na2O and K2O addition on both the sintering behavior and dielectric properties of Ca-AI-B-Si-O glass/Al2O3 composites were investigated by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimeter (DSC), X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The results show that the increasing amount of alkali oxides in the glass causes the decrease of [SiO4], which results in the decrease of the continuity of glass network, and leads to the decrease of the softening temperature Tf of the samples and the increasing trend of crystallization. And that deduces corresponding rise of densification, dielectric constant, dielectric loss of the low temperature co-fired ceramic (LTCC) materials and the decrease of its thermal conductivity. By contrast, the borosilicate glass/A1203 composites with 1.5% (mass fraction) alkali oxides sintered at 875 ℃ for 30 rain exhibit better properties of a bulk density of 2.79 g/cm3, a porosity of 0.48%, a 2 value of 2.28 W/(m.K), a er value of 7.82 and a tand value of 9.1 × 10-4 (measured at 10 MHz).展开更多
Sodium fluoride and high specific area silica were synthesized by using sodium hexafluorosilicate(Na2Si F6) and sodium carbonate decahydrate(Na2CO3·10H2O). The influencing factors of react temperature, contact ti...Sodium fluoride and high specific area silica were synthesized by using sodium hexafluorosilicate(Na2Si F6) and sodium carbonate decahydrate(Na2CO3·10H2O). The influencing factors of react temperature, contact time, sodium dodecyl sulfate(SDS) and molar ratio of Na2 Si F6 to Na2CO3·10H2O were investigated. The optimum process involves the reaction of 0.075 mol Na2 Si F6 and 150 m L, 0.225 mol Na2CO3·10H2O(molar ratio of 1:3) at 85 °C for 90 min, and 2.0×10-3 mol sodium dodecyl sulfate(SDS) as additive. The results show that the purities of Si O2 and Na F at extraction yields of 96.5% and 98.0% are 91.0% and 98.6%, respectively. The obtained Si O2 were characterized by X-ray diffraction(XRD), scanning electron microscope(SEM), Fourier transform infrared ray(FTIR), differential scanning calorimetry and thermogravimetric analysis(DSC-TGA), N2 absorption/desorption(BET) and laser particle size analyzer. The result demonstrates that Si O2 particles have a high BET surface area of 103 m2/g, and a mean grain size of 985 nm.展开更多
The galvanic corrosion behavior of metal-matrix composite plain carbon steel/boron carbide (B4C) in 3.5% NaCl solution was studied. The composite was locally produced as a weld band on carbon steel by means of the g...The galvanic corrosion behavior of metal-matrix composite plain carbon steel/boron carbide (B4C) in 3.5% NaCl solution was studied. The composite was locally produced as a weld band on carbon steel by means of the gas tungsten arc welding process and using nickel as the wetting agent. Samples from the weld band, heat-affected zone and parent metal region were extracted precisely and DC/AC electrochemical tests in combination with techniques such as scanning electron microcopy and energy dispersive spectrometry were conducted. The results of the electrochemical tests show that the corrosion resistance of the parent metal sample is higher than that of the welded composite and the HAZ samples. However, as the corrosion potential (Eco^r) of the parent metal is more positive than other two samples, this becomes the cathode in galvanic couples with two other samples. On the other hand, the weld composite sample is also cathodic due to its more positive Ecorr compared to HAZ sample. This means that the HAZ can be particularly at risk of preferential dissolution. The approach can be used in specific areas on plain carbon steel to locally increase hardness and resistance to abrasion and reduce manufacturing costs.展开更多
The surface of 1Cr5 Mo heat-resistant steel welding joint was processed with CO2 laser, and the corrosion behaviors before and after laser heat treatment(LHT) were investigated in the salt spray corrosion environments...The surface of 1Cr5 Mo heat-resistant steel welding joint was processed with CO2 laser, and the corrosion behaviors before and after laser heat treatment(LHT) were investigated in the salt spray corrosion environments. The microstructures, phases, residual stresses and retained austenite content of 1Cr5 Mo steel welding joint before and after LHT were analyzed with optical microscope and X-ray diffraction, respectively. The cracking morphologies and chemical compositions of corrosion products after salt spray corrosion were analyzed with field emission scanning electron microscopy(FESEM) and energy disperse spectroscopy(EDS), respectively, the polarization curves were measured on a PS-268 A type electrochemical workstation, and the mechanism of corrosion resistance by LHT was investigated as well. The results show that the passive film of original sample is destroyed owing to the corrosive media penetrating into the subsurface, resulting in the redox reaction. The content of residual austenite in the surface and the self-corrosion potential are increased by LHT, which is contributed to improving the capability of salt spray corrosion resistance.展开更多
β-Sialon/ZrN bonded corundum composites were synthesized using fused white corundum,alumina micro powder,zircon and carbon black by nitridation reaction sintering process. Phase composition and microstructure of the ...β-Sialon/ZrN bonded corundum composites were synthesized using fused white corundum,alumina micro powder,zircon and carbon black by nitridation reaction sintering process. Phase composition and microstructure of the synthesized composites were investigated by X-ray powder diffraction and scanning electronic microscope,and the formation process of the composites was discussed. The results show that the composites with different compositions can be obtained by controlling the heating temperature and contents of zircon and carbon black. The proper temperature to synthesize the composites is 1773 K.展开更多
The thermal decomposition process of basic magnesium carbonate was investigated. Firstly, Basic magnesium carbonate was prepared from magnesite, and the characteristics of the product were detected by X-ray diffracti...The thermal decomposition process of basic magnesium carbonate was investigated. Firstly, Basic magnesium carbonate was prepared from magnesite, and the characteristics of the product were detected by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Subsequently, the thermal decomposition process of basic magnesium carbonate in air was studied by thermogravimetry-differential thermogravimetry (TG-DTG). The results of XRD confirm that the chemical composition of basic magnesium carbonate is 4MgCO3·Mg(OH)2·4H2O. And the SEM images show that the sample is in sheet structure, with a diameter of 0.1-1 μm. The TG-DTG results demonstrate that there are two steps in the thermal decomposition process of basic magnesium carbonate. The apparent activation energies (E) were calculated by Flyrm-Wall-Ozawa method. It is obtained from Coats-Redfem's equation and Malek method that the mechanism functions of the two decomposition stages are D3 and A1.5, respectively. And then, the kinetic equations of the two steps were deduced as well.展开更多
In order to develop the applications of ore tailings, the glass ceramics were prepared by using a conventional melting-quenching-sintering process. The phase component, microstructures, magnetic properties and thermal...In order to develop the applications of ore tailings, the glass ceramics were prepared by using a conventional melting-quenching-sintering process. The phase component, microstructures, magnetic properties and thermal conductivities of the prepared glass ceramics were investigated by using X-ray diffractometer, scanning electron microscopy, vibrating sample magnetometer and thermophysical properties tester, respectively. The results show that orthorhombic olivine-type phase and triclinic sunstone-type phase formed when the glass was annealed at 700 oC, the concentration of olivine-type and sunstone-type phases decreased, the spinel-type cubic phase occurred and the amount increased when the annealing temperatures increased. The magnetic properties from the cubic spinel ferrites were detected in the glass ceramics, and the related saturation magnetization increased with the annealing temperature increasing. The porous glass ceramics with magnetic property showed much lower thermal conductivity, compared with the non-magnetic porous glass-ceramic and the dense glass-ceramics.展开更多
Micaceous iron oxide (MIO) with a hexagonal flaky shape was prepared by hydrothermal method. The ferric hydroxide used as precursor was obtained by an acidic leaching solution of pyrite cinders reacting with ammonia...Micaceous iron oxide (MIO) with a hexagonal flaky shape was prepared by hydrothermal method. The ferric hydroxide used as precursor was obtained by an acidic leaching solution of pyrite cinders reacting with ammonia solution. The optimal experimental conditions for preparing micaceous iron oxide were investigated by orthogonal experiments. Micaceous iron oxide can be successfully prepared when optimal parameters of total iron concentration of 2.0 mol/L, pH value of 8, n(Fe2+)/n(Fe3+) of 0.1, mass of seed crystal of 1 g, reaction temperature of 260 ℃ and reaction time of 30 min are applied. X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and selected area electron diffractometry (SAEM) were adopted to characterize the hydrothermal products prepared under optimal conditions. The results indicate that highly crystallized α-Fe2O3 hexagonal flakes, about 1.0-1.5 μm in diameter and 0.1 μm in thickness, are prepared. Furthermore, the quality of micaceous iron oxide prepared can meet the required characteristics of micaceous iron oxide pigments for paints (ISO 10601--2007).展开更多
A simple hydrothermal process followed by heat treatment was applied to the preparation of spinel Li1.05Mn1.95O4. In this process, electrolytic manganese dioxide(EMD) and LiOH·H2O were used as starting materials....A simple hydrothermal process followed by heat treatment was applied to the preparation of spinel Li1.05Mn1.95O4. In this process, electrolytic manganese dioxide(EMD) and LiOH·H2O were used as starting materials. The physiochemical properties of the synthesized samples were investigated by thermogravimetry-differential scanning calorimetry(TG-DSC), X-ray diffractometry(XRD), and scanning electronic microscopy(SEM). The results show that the hydrothermally synthesized precursor is an essential amorphous. The precursor can be easily transferred to spinel powders with a homogeneous structure and a regularly-shaped morphology by heat treatment. Li1.05Mn1.95O4 powder obtained by heat treating the precursor at 430 °C for 12 h and then calcining at 800 °C for 12 h shows an excellent cycling performance with an initial charge capacity of 118.2 mA·h·g-1 obtained at 0.5C rate and 93.8% of its original value retained after 100 cycles.展开更多
基金Key Project(50436010, U0834002) supported by the National Natural Science Foundation of ChinaProjects(50675070, 50705031) supported by the National Natural Science Foundation of China+1 种基金Project(8151064101000058) supported by the Natural Science Foundation of Guangdong Province,ChinaProject(E200909) supported by the Natural Science Foundation of Heilongjiang Province, China
文摘In order to study reasonable sintering technological parameters and appropriate copper powder size range of micro heat pipe (MHP) with the sintered wick, the forming principle of copper powders in wicks and MHP's heat transfer capabilities were first analyzed, then copper powders with different cell sizes and dispersions were sintered in RXL-12-11 resistance furnace under the protection of the hydrogen at different sintering temperatures for different durations of sintering time, and finally the sintered wicks' scanning electron microscope (SEM) images and their heat transfer capabilities were analyzed. The results indicate that the wick sintered with copper powders of larger cell size or smaller size range has better sintering properties and larger heat transfer capabilities; and that the increase of either sintering temperatures or sintering time also helps to improve the wick's sintering properties and heat transfer capabilities, and the former affects more obviously than the latter. Considering both its manufacturing cost and performance requirements, it is recommended that copper powders with the size range of 140-170 μm are sintered at 900-950℃ for 30-60 min in practical manufacturing. In addition, two approaches to improve wick's porosity are also proposed through theoretical analysis, which suggests that the larger the wick's porosity, the better the heat transfer capabilities of the MHP.
基金Project(2007AA03Z0455) supported by the National High Technology Research and Development Program ("863" Program) of ChinaProject(BE2010194) supported by Science & Technology Pillar Program of Jiangsu in China+3 种基金Project(BE2009168) supported by Science & Technology Pillar Program of Jiangsu in ChinaProject supported by the Priority Academic Program Development (PAPD) of Jiangsu Higher Education InstitutionsProject(KF201103) supported by State Key Laboratory of New Ceramic and Fine Processing Tsinghua UniversityProject(CXZZ12_0415) supported by Innovation Foundation for Graduate Students of Jiangsu Province,China
文摘The effects of alkali oxides (Na2O and K2O addition on both the sintering behavior and dielectric properties of Ca-AI-B-Si-O glass/Al2O3 composites were investigated by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimeter (DSC), X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The results show that the increasing amount of alkali oxides in the glass causes the decrease of [SiO4], which results in the decrease of the continuity of glass network, and leads to the decrease of the softening temperature Tf of the samples and the increasing trend of crystallization. And that deduces corresponding rise of densification, dielectric constant, dielectric loss of the low temperature co-fired ceramic (LTCC) materials and the decrease of its thermal conductivity. By contrast, the borosilicate glass/A1203 composites with 1.5% (mass fraction) alkali oxides sintered at 875 ℃ for 30 rain exhibit better properties of a bulk density of 2.79 g/cm3, a porosity of 0.48%, a 2 value of 2.28 W/(m.K), a er value of 7.82 and a tand value of 9.1 × 10-4 (measured at 10 MHz).
文摘Sodium fluoride and high specific area silica were synthesized by using sodium hexafluorosilicate(Na2Si F6) and sodium carbonate decahydrate(Na2CO3·10H2O). The influencing factors of react temperature, contact time, sodium dodecyl sulfate(SDS) and molar ratio of Na2 Si F6 to Na2CO3·10H2O were investigated. The optimum process involves the reaction of 0.075 mol Na2 Si F6 and 150 m L, 0.225 mol Na2CO3·10H2O(molar ratio of 1:3) at 85 °C for 90 min, and 2.0×10-3 mol sodium dodecyl sulfate(SDS) as additive. The results show that the purities of Si O2 and Na F at extraction yields of 96.5% and 98.0% are 91.0% and 98.6%, respectively. The obtained Si O2 were characterized by X-ray diffraction(XRD), scanning electron microscope(SEM), Fourier transform infrared ray(FTIR), differential scanning calorimetry and thermogravimetric analysis(DSC-TGA), N2 absorption/desorption(BET) and laser particle size analyzer. The result demonstrates that Si O2 particles have a high BET surface area of 103 m2/g, and a mean grain size of 985 nm.
文摘The galvanic corrosion behavior of metal-matrix composite plain carbon steel/boron carbide (B4C) in 3.5% NaCl solution was studied. The composite was locally produced as a weld band on carbon steel by means of the gas tungsten arc welding process and using nickel as the wetting agent. Samples from the weld band, heat-affected zone and parent metal region were extracted precisely and DC/AC electrochemical tests in combination with techniques such as scanning electron microcopy and energy dispersive spectrometry were conducted. The results of the electrochemical tests show that the corrosion resistance of the parent metal sample is higher than that of the welded composite and the HAZ samples. However, as the corrosion potential (Eco^r) of the parent metal is more positive than other two samples, this becomes the cathode in galvanic couples with two other samples. On the other hand, the weld composite sample is also cathodic due to its more positive Ecorr compared to HAZ sample. This means that the HAZ can be particularly at risk of preferential dissolution. The approach can be used in specific areas on plain carbon steel to locally increase hardness and resistance to abrasion and reduce manufacturing costs.
基金Project(CXLX14-1098)supported by Jiangsu Province Postgraduate Scientific Research Innovation Program,China
文摘The surface of 1Cr5 Mo heat-resistant steel welding joint was processed with CO2 laser, and the corrosion behaviors before and after laser heat treatment(LHT) were investigated in the salt spray corrosion environments. The microstructures, phases, residual stresses and retained austenite content of 1Cr5 Mo steel welding joint before and after LHT were analyzed with optical microscope and X-ray diffraction, respectively. The cracking morphologies and chemical compositions of corrosion products after salt spray corrosion were analyzed with field emission scanning electron microscopy(FESEM) and energy disperse spectroscopy(EDS), respectively, the polarization curves were measured on a PS-268 A type electrochemical workstation, and the mechanism of corrosion resistance by LHT was investigated as well. The results show that the passive film of original sample is destroyed owing to the corrosive media penetrating into the subsurface, resulting in the redox reaction. The content of residual austenite in the surface and the self-corrosion potential are increased by LHT, which is contributed to improving the capability of salt spray corrosion resistance.
基金Project(50274021) supported by the National Natural Science Foundation of China and Baoshan Iron and Steel Co., Ltd.
文摘β-Sialon/ZrN bonded corundum composites were synthesized using fused white corundum,alumina micro powder,zircon and carbon black by nitridation reaction sintering process. Phase composition and microstructure of the synthesized composites were investigated by X-ray powder diffraction and scanning electronic microscope,and the formation process of the composites was discussed. The results show that the composites with different compositions can be obtained by controlling the heating temperature and contents of zircon and carbon black. The proper temperature to synthesize the composites is 1773 K.
基金Project(20876160) supported by the National Natural Science Foundation of China
文摘The thermal decomposition process of basic magnesium carbonate was investigated. Firstly, Basic magnesium carbonate was prepared from magnesite, and the characteristics of the product were detected by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Subsequently, the thermal decomposition process of basic magnesium carbonate in air was studied by thermogravimetry-differential thermogravimetry (TG-DTG). The results of XRD confirm that the chemical composition of basic magnesium carbonate is 4MgCO3·Mg(OH)2·4H2O. And the SEM images show that the sample is in sheet structure, with a diameter of 0.1-1 μm. The TG-DTG results demonstrate that there are two steps in the thermal decomposition process of basic magnesium carbonate. The apparent activation energies (E) were calculated by Flyrm-Wall-Ozawa method. It is obtained from Coats-Redfem's equation and Malek method that the mechanism functions of the two decomposition stages are D3 and A1.5, respectively. And then, the kinetic equations of the two steps were deduced as well.
基金Project(51172287)supported by the National Natural Science Foundation of ChinaProject(2012-2013)supported by the Laboratory Research Fund of the State Key Laboratory of Powder Metallurgy,China
文摘In order to develop the applications of ore tailings, the glass ceramics were prepared by using a conventional melting-quenching-sintering process. The phase component, microstructures, magnetic properties and thermal conductivities of the prepared glass ceramics were investigated by using X-ray diffractometer, scanning electron microscopy, vibrating sample magnetometer and thermophysical properties tester, respectively. The results show that orthorhombic olivine-type phase and triclinic sunstone-type phase formed when the glass was annealed at 700 oC, the concentration of olivine-type and sunstone-type phases decreased, the spinel-type cubic phase occurred and the amount increased when the annealing temperatures increased. The magnetic properties from the cubic spinel ferrites were detected in the glass ceramics, and the related saturation magnetization increased with the annealing temperature increasing. The porous glass ceramics with magnetic property showed much lower thermal conductivity, compared with the non-magnetic porous glass-ceramic and the dense glass-ceramics.
基金Project(2008A090300016) supported by Major Science & Technology Special Program of Guangdong Province,China
文摘Micaceous iron oxide (MIO) with a hexagonal flaky shape was prepared by hydrothermal method. The ferric hydroxide used as precursor was obtained by an acidic leaching solution of pyrite cinders reacting with ammonia solution. The optimal experimental conditions for preparing micaceous iron oxide were investigated by orthogonal experiments. Micaceous iron oxide can be successfully prepared when optimal parameters of total iron concentration of 2.0 mol/L, pH value of 8, n(Fe2+)/n(Fe3+) of 0.1, mass of seed crystal of 1 g, reaction temperature of 260 ℃ and reaction time of 30 min are applied. X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and selected area electron diffractometry (SAEM) were adopted to characterize the hydrothermal products prepared under optimal conditions. The results indicate that highly crystallized α-Fe2O3 hexagonal flakes, about 1.0-1.5 μm in diameter and 0.1 μm in thickness, are prepared. Furthermore, the quality of micaceous iron oxide prepared can meet the required characteristics of micaceous iron oxide pigments for paints (ISO 10601--2007).
基金Project(50174058)supported by the National Natural Science Foundation of ChinaProject(2011A025)supported by the Glorious Laurel Scholar Program of Guangxi Zhuang Autonomous Region,China
文摘A simple hydrothermal process followed by heat treatment was applied to the preparation of spinel Li1.05Mn1.95O4. In this process, electrolytic manganese dioxide(EMD) and LiOH·H2O were used as starting materials. The physiochemical properties of the synthesized samples were investigated by thermogravimetry-differential scanning calorimetry(TG-DSC), X-ray diffractometry(XRD), and scanning electronic microscopy(SEM). The results show that the hydrothermally synthesized precursor is an essential amorphous. The precursor can be easily transferred to spinel powders with a homogeneous structure and a regularly-shaped morphology by heat treatment. Li1.05Mn1.95O4 powder obtained by heat treating the precursor at 430 °C for 12 h and then calcining at 800 °C for 12 h shows an excellent cycling performance with an initial charge capacity of 118.2 mA·h·g-1 obtained at 0.5C rate and 93.8% of its original value retained after 100 cycles.