期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
一种基于扩张残差网络的雷达信号识别方法 被引量:4
1
作者 陈琳 唐骏 +1 位作者 余跃 张旭洋 《电光与控制》 CSCD 北大核心 2023年第1期97-102,共6页
针对低信噪比(SNR)条件下雷达信号识别率低的问题,提出一种基于多时频图像融合和扩张残差网络的识别方法。首先,通过多种时频分析方法,将雷达信号变换为不同的时频图,并对这些时频图进行融合和处理。然后,构建一种新网络模型,将扩张残... 针对低信噪比(SNR)条件下雷达信号识别率低的问题,提出一种基于多时频图像融合和扩张残差网络的识别方法。首先,通过多种时频分析方法,将雷达信号变换为不同的时频图,并对这些时频图进行融合和处理。然后,构建一种新网络模型,将扩张残差网络与特征融合提取模块相结合,对10类雷达信号进行识别。仿真结果表明,当SNR为-6 dB时,所提方法对10类雷达信号整体识别准确率达到98.7%。 展开更多
关键词 雷达信号识别 时频分析 特征融合 特征融合提取模块 扩张残差网络
在线阅读 下载PDF
基于扩张残差网络的雷达辐射源信号识别 被引量:36
2
作者 秦鑫 黄洁 +2 位作者 查雄 骆丽萍 胡德秀 《电子学报》 EI CAS CSCD 北大核心 2020年第3期456-462,共7页
针对低信噪比条件下,复杂多类雷达辐射源信号识别存在特征提取困难,识别正确率低的问题,本文提出了一种基于时频分析和扩张残差网络的辐射源信号自动识别方法.首先通过时频分析将信号时域波形转换成二维时频图像以反映信号本质特征;然... 针对低信噪比条件下,复杂多类雷达辐射源信号识别存在特征提取困难,识别正确率低的问题,本文提出了一种基于时频分析和扩张残差网络的辐射源信号自动识别方法.首先通过时频分析将信号时域波形转换成二维时频图像以反映信号本质特征;然后进行时频图像预处理以保留时频图像完备信息,适应深度学习模型输入;最后构建扩张残差网络以自动提取信号时频图像特征,实现雷达辐射源信号分类识别.实验结果表明,信噪比为-6dB时,该方法对16类雷达辐射源信号的整体识别正确率能够达到98.2%,对时频图像特征相似的类LFM(Linear Frequency Modulation)信号的整体识别正确率超过95%.本文提供了一种新的雷达辐射源信号智能识别方法,具有较好的工程应用前景. 展开更多
关键词 新体制雷达 雷达信号识别 时频分析 图像预处理 深度学习 扩张残差网络
在线阅读 下载PDF
基于DRN和Faster R-CNN融合模型的行为识别算法 被引量:3
3
作者 杨楠 杨莘 杜能 《计算机应用研究》 CSCD 北大核心 2019年第10期3192-3195,3200,共5页
针对传统单人行为识别算法易受行人形态多样性、背景和光照等影响的问题进行研究。基于扩张残差网络(DRN)的精准分类效果及目标检测网络Faster R-CNN在目标追踪方面的准确性,提出了一种DRN和Faster R-CNN的融合网络模型。该模型在Faster... 针对传统单人行为识别算法易受行人形态多样性、背景和光照等影响的问题进行研究。基于扩张残差网络(DRN)的精准分类效果及目标检测网络Faster R-CNN在目标追踪方面的准确性,提出了一种DRN和Faster R-CNN的融合网络模型。该模型在Faster R-CNN中融入DRN的扩张卷积残差块代替原来的一般卷积层,并对融合模型进行了两方面的改进:在每一层前面添加一个batch normalization层;用三层扩张卷积残差块代替部分两层残差块。实验结果表明三种融合网络识别算法在Olympic sports dataset上较其他行为识别算法取得了更高的mAP。其中,包含三层扩张卷积残差块的融合模型识别性能最好,mAP达到78.9%。 展开更多
关键词 行为识别 扩张残差网络 FasterR-CNN
在线阅读 下载PDF
基于改进Faster RCNN的驾驶员手持通话检测 被引量:5
4
作者 王彬 李小曼 赵作鹏 《江苏大学学报(自然科学版)》 CAS 北大核心 2023年第3期318-323,共6页
针对现有驾驶员通话行为识别误判率较高的问题,提出一种基于改进Faster RCNN的驾驶员行为检测方法,对驾驶员的违规手持通话进行检测.介绍了针对区域建议网络(RPN)及其损失函数的优化策略,并在原始Faster RCNN上运用多尺度训练、增加锚... 针对现有驾驶员通话行为识别误判率较高的问题,提出一种基于改进Faster RCNN的驾驶员行为检测方法,对驾驶员的违规手持通话进行检测.介绍了针对区域建议网络(RPN)及其损失函数的优化策略,并在原始Faster RCNN上运用多尺度训练、增加锚点数量以及引入残差扩张网络的方法增强网络检测不同尺寸目标的鲁棒性.基于车载平台上采集的驾驶员行为图像,对文中提出的方法进行仿真试验.结果表明:RPN和Faster RCNN通过交替优化共享特征提取网络部分,实现高效的目标检测,相较于原始Faster RCNN,检测精确度提高了3.8%,对环境的适应性更强. 展开更多
关键词 驾驶员危险行为 目标检测 分神驾驶 驾驶辅助 多尺度训练 残差扩张网络 Faster RCNN
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部