期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于扩张卷积神经网络的异常检测模型 被引量:2
1
作者 高治军 曹浩东 韩忠华 《沈阳建筑大学学报(自然科学版)》 CAS 北大核心 2024年第4期738-744,共7页
目的提出一种基于DCNN-MiLSTM的异常检测模型,解决传统的网络异常检测模型难以处理具有时序特征网络流量数据的问题。方法对原始流量数据的时间标签进行重定义,利用扩张卷积神经网络对整体特征进行提取,同时引入Mogrifier LSTM网络,对... 目的提出一种基于DCNN-MiLSTM的异常检测模型,解决传统的网络异常检测模型难以处理具有时序特征网络流量数据的问题。方法对原始流量数据的时间标签进行重定义,利用扩张卷积神经网络对整体特征进行提取,同时引入Mogrifier LSTM网络,对时序信息进行深层次挖掘。结果与其他异常检测模型相比,DCNN-MiLSTM模型的准确率达到99.12%,召回率为98.94%,F_(1)值为99.03%,各项指标均优于其他常见模型,提升了检测异常网络流量数据的能力。结论DCNN-MiLSTM模型可以更好地处理具有时序特征的流量,捕捉流量数据中的时间依赖关系和趋势,更有效地检测和识别出异常数据。 展开更多
关键词 网络异常检测 扩张卷积神经网络 标签重定义 时序特性
在线阅读 下载PDF
基于多尺度扩张卷积神经网络的城中村遥感识别 被引量:5
2
作者 冯权泷 陈泊安 +3 位作者 牛博文 任燕 王莹 刘建涛 《农业机械学报》 EI CAS CSCD 北大核心 2021年第11期181-189,218,共10页
城中村是我国快速城市化进程中的一个特殊产物,通常存在人口密集、建筑私自改造等问题。开展城中村的识别和监测对城乡统筹规划以及精细化治理等具有重要意义。基于深度学习提出了一种新的城中村遥感识别模型,该模型包括一个多尺度扩张... 城中村是我国快速城市化进程中的一个特殊产物,通常存在人口密集、建筑私自改造等问题。开展城中村的识别和监测对城乡统筹规划以及精细化治理等具有重要意义。基于深度学习提出了一种新的城中村遥感识别模型,该模型包括一个多尺度扩张卷积模块和一个非局部特征提取模块,前者能够聚合多层级空间特征以适应城中村形状、尺度的变异性;后者用于提取全局语义特征以提高城中村的类间可分性。选取北京市二环与六环之间的区域作为研究区,实验结果表明本文模型取得了较好的识别效果,总体精度可达94.27%,Kappa系数为0.8839,且效果优于传统模型。本文研究表明,基于多尺度扩张卷积神经网络进行城中村遥感识别是可行且有效的,可为城乡统筹规划提供精确的城中村空间分布数据。 展开更多
关键词 城中村 场景识别 扩张卷积神经网络 深度学习
在线阅读 下载PDF
融合多特征嵌入的中文医疗命名实体识别模型MF-MNER 被引量:1
3
作者 常远 季长伟 +1 位作者 张春玲 胡强 《小型微型计算机系统》 CSCD 北大核心 2024年第12期2915-2922,共8页
医疗问诊数据中的命名实体识别不仅面临着实体交叉与边界模糊,而且问诊数据通常存在表述不准确、不规范和口语化等问题,已有医疗命名实体识别方法在问诊数据中适用效果较差.为此,提出一种适用于问诊数据的多特征嵌入中文医疗命名实体识... 医疗问诊数据中的命名实体识别不仅面临着实体交叉与边界模糊,而且问诊数据通常存在表述不准确、不规范和口语化等问题,已有医疗命名实体识别方法在问诊数据中适用效果较差.为此,提出一种适用于问诊数据的多特征嵌入中文医疗命名实体识别模型MF-MNER.该模型从字符、部首、词汇、边界和句法依赖等不同视角下获取字符的语义特征,并将融合后的语义特征经过扩张卷积神经网络进行卷积聚合,最后采用CRF模型进行序列解码.在医疗问诊数据集中开展的实验表明,多特征嵌入能明显提升命名实体的识别质量,MF-MNER相对于其他方法能够更适用于问诊数据中的医疗命名实体识别.此外,在公开的电子病例集中的实验表明,MF-MNER的高性能医疗命名实体识别具有普适性. 展开更多
关键词 命名实体 问诊数据 多特征嵌入 扩张卷积神经网络 CRF模型
在线阅读 下载PDF
基于多尺度特征和注意力的金融时序预测方法 被引量:3
4
作者 詹熙 潘志松 +3 位作者 黎维 张艳艳 白玮 王彩玲 《计算机工程与应用》 CSCD 北大核心 2022年第19期107-115,共9页
金融时间序列预测是经济领域中一个非常重要的实际问题,然而,由于金融市场的噪声和波动性,当前存在方法的预测精度尚不能令人满意。为了提高金融时间序列的预测精度,提出了一种融合扩张卷积神经网络(dilated convolutional neural netwo... 金融时间序列预测是经济领域中一个非常重要的实际问题,然而,由于金融市场的噪声和波动性,当前存在方法的预测精度尚不能令人满意。为了提高金融时间序列的预测精度,提出了一种融合扩张卷积神经网络(dilated convolutional neural network,DCNN)、长短时记忆神经网络(long short term memory,LSTM)和注意力机制(attention mechanism,AT)的混合预测模型DCNN_LSTM_AT。该模型由两个部分组成:第一部分包含扩张卷积神经网络和基于LSTM的编码器,其功能在于提取原始序列数据中不同时间尺度的有效信息;第二部分由带注意力机制的LSTM解码器构成,其功能在于对第一部分提取的信息进行过滤并利用过滤后的信息进行预测。最后将所提模型在3支股指数据集和3支个股数据集上进行实验,并与其他常见的基准模型进行了对比,实验结果表明该模型相比于其他模型具有更好的预测精度和稳定性. 展开更多
关键词 股指预测 扩张卷积神经网络(DCNN) 注意力机制 长短时记忆神经网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部