期刊文献+
共找到101篇文章
< 1 2 6 >
每页显示 20 50 100
图像簇块扩张卷积驱动的工业相机颜色恒常系统
1
作者 陈湘军 《实验室研究与探索》 北大核心 2025年第10期105-112,共8页
为解决工业相机颜色恒常性任务中存在高质量数据集匮乏与实时处理的需求的问题,提出了一种结合数据增强与轻量网络方法。通过归一化光照色度均匀采样策略和图像簇块分割扩展数据集,解决标签分布不均和样本不足的问题;设计了一个由特征... 为解决工业相机颜色恒常性任务中存在高质量数据集匮乏与实时处理的需求的问题,提出了一种结合数据增强与轻量网络方法。通过归一化光照色度均匀采样策略和图像簇块分割扩展数据集,解决标签分布不均和样本不足的问题;设计了一个由特征提取模块和融合模块组成的5层卷积分段网络,在保证精度的同时显著降低了复杂度。实验结果表明,在Gehler-Shi/NUS数据集上,中位数误差分别仅为2.17°和2.73°。在部署工业相机并集成FPGA后,平均角度误差为1.52°,处理延迟≤10 ms,可支持4K@30f/s实时色彩校正。该方法在实现接近最优精度的同时,具备了更高的稳定性和处理效率,为工业复杂光照环境下的实时色彩校正提供了可靠解决方案。 展开更多
关键词 颜色恒常性 归一均匀采样 簇块扩张卷积 分段神经网络 扩展数据集
在线阅读 下载PDF
基于扩张卷积神经网络的异常检测模型 被引量:4
2
作者 高治军 曹浩东 韩忠华 《沈阳建筑大学学报(自然科学版)》 CAS 北大核心 2024年第4期738-744,共7页
目的提出一种基于DCNN-MiLSTM的异常检测模型,解决传统的网络异常检测模型难以处理具有时序特征网络流量数据的问题。方法对原始流量数据的时间标签进行重定义,利用扩张卷积神经网络对整体特征进行提取,同时引入Mogrifier LSTM网络,对... 目的提出一种基于DCNN-MiLSTM的异常检测模型,解决传统的网络异常检测模型难以处理具有时序特征网络流量数据的问题。方法对原始流量数据的时间标签进行重定义,利用扩张卷积神经网络对整体特征进行提取,同时引入Mogrifier LSTM网络,对时序信息进行深层次挖掘。结果与其他异常检测模型相比,DCNN-MiLSTM模型的准确率达到99.12%,召回率为98.94%,F_(1)值为99.03%,各项指标均优于其他常见模型,提升了检测异常网络流量数据的能力。结论DCNN-MiLSTM模型可以更好地处理具有时序特征的流量,捕捉流量数据中的时间依赖关系和趋势,更有效地检测和识别出异常数据。 展开更多
关键词 网络异常检测 扩张卷积神经网络 标签重定义 时序特性
在线阅读 下载PDF
基于扩张卷积和Transformer的视听融合语音分离方法 被引量:2
3
作者 刘宏清 谢奇洲 +1 位作者 赵宇 周翊 《信号处理》 CSCD 北大核心 2024年第7期1208-1217,共10页
为了提高语音分离的效果,除了利用混合的语音信号,还可以借助视觉信号作为辅助信息。这种融合了视觉与音频信号的多模态建模方式,已被证实可以有效地提高语音分离的性能,为语音分离任务提供了新的可能性。为了更好地捕捉视觉与音频特征... 为了提高语音分离的效果,除了利用混合的语音信号,还可以借助视觉信号作为辅助信息。这种融合了视觉与音频信号的多模态建模方式,已被证实可以有效地提高语音分离的性能,为语音分离任务提供了新的可能性。为了更好地捕捉视觉与音频特征中的长期依赖关系,并强化网络对输入上下文信息的理解,本文提出了一种基于一维扩张卷积与Transformer的时域视听融合语音分离模型。将基于频域的传统视听融合语音分离方法应用到时域中,避免了时频变换带来的信息损失和相位重构问题。所提网络架构包含四个模块:一个视觉特征提取网络,用于从视频帧中提取唇部嵌入特征;一个音频编码器,用于将混合语音转换为特征表示;一个多模态分离网络,主要由音频子网络、视频子网络,以及Transformer网络组成,用于利用视觉和音频特征进行语音分离;以及一个音频解码器,用于将分离后的特征还原为干净的语音。本文使用LRS2数据集生成的包含两个说话者混合语音的数据集。实验结果表明,所提出的网络在尺度不变信噪比改进(Scale-Invariant Signal-to-Noise Ratio Improvement,SISNRi)与信号失真比改进(Signal-to-Distortion Ratio Improvement,SDRi)这两种指标上分别达到14.0 dB与14.3 dB,较纯音频分离模型和普适的视听融合分离模型有明显的性能提升。 展开更多
关键词 语音分离 视听融合 多头自注意力机制 扩张卷积
在线阅读 下载PDF
基于混合分组扩张卷积的玉米植株图像深度估计
4
作者 周云成 刘忠颖 +2 位作者 邓寒冰 苗腾 王昌远 《华南农业大学学报》 CSCD 北大核心 2024年第2期280-292,共13页
【目的】研究面向玉米田间场景的图像深度估计方法,解决深度估计模型因缺少有效光度损失度量而易产生的精度不足问题,为田间智能农业机械视觉系统设计及导航避障等提供技术支持。【方法】应用双目相机作为视觉传感器,提出一种基于混合... 【目的】研究面向玉米田间场景的图像深度估计方法,解决深度估计模型因缺少有效光度损失度量而易产生的精度不足问题,为田间智能农业机械视觉系统设计及导航避障等提供技术支持。【方法】应用双目相机作为视觉传感器,提出一种基于混合分组扩张卷积的无监督场景深度估计模型。设计一种混合分组扩张卷积结构及对应的自注意力机制,由此构建反向残差模块和深度估计骨干网络;并将光照不敏感的图像梯度和Gabor纹理特征引入视图表观差异度量,构建模型优化目标。以田间玉米植株图像深度估计为例,开展模型的训练和测试试验。【结果】与固定扩张因子相比,采用混合分组扩张卷积使田间玉米植株深度估计平均相对误差降低了63.9%,平均绝对误差和均方根误差则分别降低32.3%和10.2%,模型精度显著提高;图像梯度、Gabor纹理特征和自注意力机制的引入,使田间玉米植株深度估计平均绝对误差和均方根误差进一步降低3.2%和4.6%。增加浅层编码器的网络宽度和深度可显著提高模型深度估计精度,但该处理对深层编码器的作用不明显。该研究设计的自注意力机制对编码器浅层反向残差模块中不同扩张因子的卷积分组体现出选择性,说明该机制具有自主调节感受野的能力。与Monodepth2相比,该研究模型田间玉米植株深度估计的平均相对误差降低48.2%,平均绝对误差降低17.1%;在20 m采样范围内,估计深度的平均绝对误差小于16 cm,计算速度为14.3帧/s。【结论】基于混合分组扩张卷积的图像深度估计模型优于现有方法,有效提升了深度估计的精度,能够满足田间玉米植株图像的深度估计要求。 展开更多
关键词 深度估计 扩张卷积 自注意力 无监督学习 玉米植株图像
在线阅读 下载PDF
空频域结合的多尺度扩张卷积注意力数字水印
5
作者 孙刘杰 刘磊 《包装工程》 CAS 北大核心 2024年第3期193-200,共8页
目的 将深度学习应用于数字水印,在隐藏信息的同时,不断提高图像的不可见性和鲁棒性,提出一种结合空间域和频率域的多尺度扩张卷积注意力数字水印算法(SF-ACA)。方法 SF-ACA算法的网络框架包含由ACA和SFE构成的生成器、解码器2个部分组... 目的 将深度学习应用于数字水印,在隐藏信息的同时,不断提高图像的不可见性和鲁棒性,提出一种结合空间域和频率域的多尺度扩张卷积注意力数字水印算法(SF-ACA)。方法 SF-ACA算法的网络框架包含由ACA和SFE构成的生成器、解码器2个部分组成。其中,ACA网络中的MCA模块将3个不同扩张率的扩张卷积对载体图像以多尺度融合的方式进行特征提取,使载体图像能更有效地隐藏水印信息;SFE结合快速傅里叶卷积块,在空域和频域中通过不同大小的感受野捕获互补信息,更精准地获取水印的特征信息,增强了秘密信息的不可见性和鲁棒性。结果 本文提出的水印方法在隐藏与载体图像尺寸相等的三通道彩色图像时,PSNR值为38.81 dB,较UDH方法的PSNR值提高了7.78%。水印图像的隐藏容量是4096比特,该算法与UDH方法在Dropout、Gaussian噪声、JPEG攻击下,提取精度分别提升了5.38%、10.5%、1.65%,满足不可见性要求的同时实现了强鲁棒性。结论 本文方法在隐藏容量较大时,不可见性和鲁棒性都达到了较好的性能。 展开更多
关键词 深度学习 水印 注意力机制 扩张卷积 傅里叶变换
在线阅读 下载PDF
基于数据增强和扩张卷积的ICD编码分类 被引量:4
6
作者 闫婧 赵迪 +1 位作者 孟佳娜 林鸿飞 《计算机应用研究》 CSCD 北大核心 2024年第11期3329-3336,共8页
针对ICD编码分类任务存在的标签分布不平衡、临床记录文本过长和标签空间庞大等问题,提出一种基于数据增强和扩张卷积的ICD编码分类方法。首先,引入预训练模型BioLinkBERT,在生物医学领域采用无监督学习方式进行训练,以缓解域不匹配问题... 针对ICD编码分类任务存在的标签分布不平衡、临床记录文本过长和标签空间庞大等问题,提出一种基于数据增强和扩张卷积的ICD编码分类方法。首先,引入预训练模型BioLinkBERT,在生物医学领域采用无监督学习方式进行训练,以缓解域不匹配问题;其次,运用Mixup数据增强技术扩充隐藏表示,从而增加数据多样性及提升模型分类的鲁棒性,解决标签分布不平衡问题;最后,利用多粒度扩张卷积有效捕获文本数据中的长距离依赖关系,避免因输入文本过长影响模型效果。实验结果表明,该模型在MIMIC-Ⅲ数据集的两个子集上与多种方法进行比较,相较于基准模型的F_1值和precision@k值分别提升0.4%~1.5%和1.2%~1.6%。因此,本研究为解决ICD编码分类中的挑战提供有效的解决方案。 展开更多
关键词 ICD编码分类 BioLinkBERT预训练模型 Mixup数据增强 扩张卷积
在线阅读 下载PDF
基于可分离扩张卷积和通道剪枝的番茄病害分类方法 被引量:5
7
作者 姜晟久 钟国韵 《江苏农业科学》 北大核心 2024年第2期182-189,共8页
为了实现番茄病害的快速检测,针对传统卷积神经网络病害分类方法参数量大、对算力要求高的问题,提出了一种基于可分离扩张卷积和通道剪枝的番茄病害分类方法。基于MobileNet v2,提出了一种可分离扩张卷积块,在不增加网络参数的情况下,... 为了实现番茄病害的快速检测,针对传统卷积神经网络病害分类方法参数量大、对算力要求高的问题,提出了一种基于可分离扩张卷积和通道剪枝的番茄病害分类方法。基于MobileNet v2,提出了一种可分离扩张卷积块,在不增加网络参数的情况下,扩大网络的感受野,提升网络提取番茄叶部病害特征的能力。然后替换PReLU激活函数,避免产生梯度弥散问题。同时能够更好地处理图像,提高网络对番茄叶部病害负值特征信息的提取能力,具有更好的鲁棒性。最后,使用通道剪枝技术,引入缩放因子联合权重损失函数,分辨相对不重要的通道,并对其进行裁剪,再对剪枝后的网络进行微调并重复以上步骤,在大幅减少网络参数量的同时,不影响网络的性能。在数据集上的结果表明,研究方法在网络参数量仅为0.7 M的情况下,准确率达到了96.44%,精确率达到了96.36%。与目前主流轻量化网络MobileNet v3、GhostNet、ShuffleNet v2相比,模型准确率分别提高了0.45、0.77、0.24百分点,同时模型参数量分别仅为以上模型的12.96%、13.46%、30.43%,模型更轻量且准确率更高。 展开更多
关键词 番茄病害 可分离扩张卷积 通道剪枝 MobileNet v2
在线阅读 下载PDF
基于扩张卷积条件生成对抗网络的红外小目标检测 被引量:1
8
作者 张国栋 陈志华 盛斌 《计算机科学》 CSCD 北大核心 2024年第2期151-160,共10页
基于深度神经网络的目标检测方法凭借自身强大的建模能力,在通用目标检测任务中取得了良好的表现。然而,在红外小目标信号弱、像素小的本质特征的影响下,深度神经网络层次的加深和池化操作的大量使用导致小目标语义信息丢失,使得现有方... 基于深度神经网络的目标检测方法凭借自身强大的建模能力,在通用目标检测任务中取得了良好的表现。然而,在红外小目标信号弱、像素小的本质特征的影响下,深度神经网络层次的加深和池化操作的大量使用导致小目标语义信息丢失,使得现有方法的检测效果并不理想。文中从红外小目标特性这一关键问题出发,提出了一种新颖的基于扩张卷积条件生成对抗网络的目标检测算法。所提方法应用扩张卷积设计了生成网络,充分利用上下文信息建立层与层之间的关联,将红外小目标更多的语义信息保留到深层网络中,增强目标特征,进而提高检测性能。此外,设计了融合通道与空间维度的混合注意力模块,在特征提取时有选择性地放大目标信息,抑制背景信息;设计了自注意关联模块处理层与层之间信息融合过程中产生的语义冲突问题。文中使用多种评价指标将所提网络模型与目前先进的其他红外小目标检测方法进行对比,证明了该方法在复杂背景下目标检测性能的优越性。在公开的SIRST数据集上,所提模型的F分数为64.70%,相比传统方法提高了8.29%,相比深度学习方法提高了7.29%;在公开的ISOS数据集上,所提模型的F分数为64.54%,相比传统方法提高了23.59%,相比深度学习方法提高了6.58%。 展开更多
关键词 红外小目标检测 条件生成对抗网络 特征融合 注意力机制 扩张卷积
在线阅读 下载PDF
基于密集扩张卷积残差网络的地震数据随机噪声压制方法 被引量:5
9
作者 高磊 沈侯森 闵帆 《石油物探》 CSCD 北大核心 2023年第4期655-668,共14页
地震数据处理过程中压制随机噪声是提高地震数据质量的重要环节之一,其关键是有效压制噪声并尽可能地保留有效信号。针对深度学习方法在地震数据去噪处理时局部特征提取的局限性,提出了一种基于密集扩张卷积残差网络(DDCRN)的去噪方法。... 地震数据处理过程中压制随机噪声是提高地震数据质量的重要环节之一,其关键是有效压制噪声并尽可能地保留有效信号。针对深度学习方法在地震数据去噪处理时局部特征提取的局限性,提出了一种基于密集扩张卷积残差网络(DDCRN)的去噪方法。DDCRN主要由多个密集扩张卷积特征融合块(DDCFFB)构成,DDCFFB内部的密集块和多尺度扩张卷积可以用来并行提取特征,融合结构可以用来融合特征,残差结构则跳跃连接通道数。其中,密集块连接不同的卷积层来学习特征,关注局部特征的传播和重用,高效提取复杂信息;多尺度扩张卷积扩大感受野,增加特征提取范围;残差学习则加快网络训练的收敛速度。分别采用K奇异值分解(KSVD)、频域空间域反卷积(f-x decon)、去噪卷积神经网络(DnCNN)、U型网络(Unet)以及DDCRN去噪方法对合成地震数据和实际地震数据进行去噪处理。结果表明,DDCRN去噪方法不仅能更有效地压制随机噪声,同时还能更完整地保留同相轴的连续性。 展开更多
关键词 地震数据去噪 特征融合 卷积神经网络 密集块 扩张卷积
在线阅读 下载PDF
混合扩张卷积和注意力机制的路面裂缝检测 被引量:7
10
作者 瞿中 李明 《计算机工程与设计》 北大核心 2023年第8期2425-2431,共7页
针对复杂背景下路面裂缝检测困难的问题,提出一种基于混合扩张卷积和空间-通道注意力机制的路面裂缝检测算法。基于改进的U-Net网络,在编码阶段,使用空间-通道注意力机制增强裂缝特征,抑制非裂缝特征;在网络中间部分,使用混合扩张卷积... 针对复杂背景下路面裂缝检测困难的问题,提出一种基于混合扩张卷积和空间-通道注意力机制的路面裂缝检测算法。基于改进的U-Net网络,在编码阶段,使用空间-通道注意力机制增强裂缝特征,抑制非裂缝特征;在网络中间部分,使用混合扩张卷积实现在不增加额外模块的前提下增大网络的感受野;在解码阶段,融合多层次和多尺度特征使最终预测结果更接近路面真实情况。实验结果表明,所提算法能够快速准确地对路面裂缝进行检测,具有较强的鲁棒性。 展开更多
关键词 裂缝检测 深度学习 卷积神经网络 编码-解码结构 混合扩张卷积 空间-通道注意力机制 多尺度特征融合
在线阅读 下载PDF
结合反卷积和扩张卷积的信道估计算法 被引量:1
11
作者 吴宏林 陈稳 汤辉 《信号处理》 CSCD 北大核心 2021年第11期2193-2199,共7页
信道估计作为无线通信的关键,近年来成为相关领域的研究热点。本文针对正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统下传统信道估计算法性能难以满足复杂场景的通信需求、受噪声影响大等问题,提出了一种基于反... 信道估计作为无线通信的关键,近年来成为相关领域的研究热点。本文针对正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统下传统信道估计算法性能难以满足复杂场景的通信需求、受噪声影响大等问题,提出了一种基于反卷积网络及扩张卷积网络信道估计的深度学习方法。该方法利用信道的相关性构建了一个轻量级的反卷积网络,利用少数几层反卷积操作来逐步实现信道插值与估计,在较低的复杂度下较好地实现了信道估计。为改善估计性能,进一步构建了一个扩张卷积网络来抑制信道噪声,提高信道估计的准确度。仿真结果表明,在不同信噪比条件下,本文提出的基于反卷积及扩张卷积的深度学习方法比传统方法具有更低的估计误差,且复杂度较低。 展开更多
关键词 信道估计 深度学习 卷积 扩张卷积
在线阅读 下载PDF
加权密集扩张卷积网络的随机脉冲噪声去除 被引量:2
12
作者 曹义亲 符杨逸 饶哲初 《计算机工程与应用》 CSCD 北大核心 2023年第18期179-189,共11页
基于深度学习的图像去噪方法,大多没有充分利用不同层次的特征信息,通道合并时都是直接在通道维度上对特征图进行拼接,并没有考虑到浅层与深层卷积特征各自的重要性。为解决上述问题,提出一种加权密集扩张卷积连接网络模型,用于去除图... 基于深度学习的图像去噪方法,大多没有充分利用不同层次的特征信息,通道合并时都是直接在通道维度上对特征图进行拼接,并没有考虑到浅层与深层卷积特征各自的重要性。为解决上述问题,提出一种加权密集扩张卷积连接网络模型,用于去除图像的随机脉冲噪声。通过使用不同扩张因子的扩张卷积来丰富浅层特征图的多尺度特征信息;考虑到浅层与深层卷积特征各自的重要性,将原始密集块进行改进,采用加权密集连接结构,并使用扩张卷积提高感受野;采用跳跃连接,将浅层的多尺度特征信息和不同加权密集扩张卷积块的特征信息进行融合,充分利用深层卷积特征和浅层卷积特征信息实现随机脉冲噪声的复原。实验结果表明,所提模型的去噪效果更加突出。 展开更多
关键词 图像去噪 深度学习 密集连接 扩张卷积 权重 随机脉冲噪声
在线阅读 下载PDF
双通道扩张卷积注意力图像去噪网络 被引量:2
13
作者 曹义亲 邱沂 《计算机应用研究》 CSCD 北大核心 2023年第5期1548-1552,1564,共6页
针对深度学习图像去噪算法存在网络过深导致细节丢失的问题,提出一种双通道扩张卷积注意力网络CEANet。拼接信息保留模块将每一层的输出特征图融合,弥补卷积过程中丢失的图像细节特征进行密集学习;扩张卷积可以在去噪性能和效率之间进... 针对深度学习图像去噪算法存在网络过深导致细节丢失的问题,提出一种双通道扩张卷积注意力网络CEANet。拼接信息保留模块将每一层的输出特征图融合,弥补卷积过程中丢失的图像细节特征进行密集学习;扩张卷积可以在去噪性能和效率之间进行权衡,用更少的参数获取更多的信息,增强模型对噪声图像的表示能力,基于扩张卷积的稀疏模块通过扩大感受野获得重要的结构信息和边缘特征,恢复复杂噪声图像的细节;基于注意力机制的特征增强模块通过全局特征和局部特征进行融合,进一步指导网络去噪。实验结果表明,在高斯白噪声等级为25和50时,CEANet都获得了较高的峰值信噪比均值和结构相似性均值,能够更高效地捕获图像细节信息,在边缘保持和噪声抑制方面,具有较好的性能。相关实验证明了该算法进行图像去噪的有效性。 展开更多
关键词 图像去噪 深度学习 扩张卷积 注意力机制
在线阅读 下载PDF
基于压缩激励残差分组扩张卷积和密集线性门控Unet歌声分离方法 被引量:1
14
作者 张天骐 熊天 +1 位作者 吴超 闻斌 《应用科学学报》 CAS CSCD 北大核心 2023年第5期815-830,共16页
针对Unet频域歌声分离网络模型对语音时序信息的捕获困难以及底层特征利用率不高的问题,设计了一种相比于基线Unet网络参数量更小且歌声分离效果更好的卷积神经网络。首先设计了一种残差分组扩张卷积结合压缩激励模块,并将其引入到编码... 针对Unet频域歌声分离网络模型对语音时序信息的捕获困难以及底层特征利用率不高的问题,设计了一种相比于基线Unet网络参数量更小且歌声分离效果更好的卷积神经网络。首先设计了一种残差分组扩张卷积结合压缩激励模块,并将其引入到编码和解码阶段,该模块在参数量减少和增大网络感受野的同时自适应学习不同通道的重要特征,不但增强了有用特征,而且还抑制了无用特征。其次在传输层将线性门控单元采用密集相加连接来增强网络在特征传递过程中对时序特征的获取,并且使用扩张卷积来代替普通卷积以扩大网络的感受野。最后使用注意力门控机制来代替基线Unet中的跳跃连接以加强网络对底层特征的利用。在Ccmixter和MUSDB18数据集中进行实验,与基线网络相比,歌声分离的性能指标都有提升,并且其参数量大约只有基线网络的1/5。 展开更多
关键词 歌声分离 分组扩张卷积 门控线性单元 注意力门控
在线阅读 下载PDF
基于扩张卷积的图像修复 被引量:10
15
作者 冯浪 张玲 张晓龙 《计算机应用》 CSCD 北大核心 2020年第3期825-831,共7页
现有图像修复方法虽然能够补全图像缺失区域的内容,但是仍然存在结构扭曲、纹理模糊、内容不连贯等问题,无法满足人们视觉上的要求。针对这些问题,提出一种基于扩张卷积的图像修复方法,通过引入扩张卷积的思想增大感受野来提升图像修复... 现有图像修复方法虽然能够补全图像缺失区域的内容,但是仍然存在结构扭曲、纹理模糊、内容不连贯等问题,无法满足人们视觉上的要求。针对这些问题,提出一种基于扩张卷积的图像修复方法,通过引入扩张卷积的思想增大感受野来提升图像修复的质量。该方法基于生成对抗网络(GAN)的思想,分为生成网络和对抗网络。生成网络包括全局内容修复网络和局部细节修复网络,并使用gated卷积动态地学习图像特征,解决了使用传统卷积神经网络方法无法较好地补全大面积不规则缺失区域的问题。首先利用全局内容修复网络获得一个初始的内容补全结果,之后再通过局部细节修复网络对局部纹理细节进行修复。对抗网络由SN-PatchGAN鉴别器构成,用于评判图像修复效果的好坏。实验结果表明,与目前存在的图像修复方法相比,该方法在峰值信噪比(PSNR)、结构相似性(SSIM)、inception分数3个指标上都有较大的提升;而且该方法有效解决了传统修复方法出现的纹理模糊问题,较好地满足了人们的视觉连贯性,证实了提出的方法的有效性和可行性。 展开更多
关键词 图像修复 扩张卷积 生成对抗网络 纹理信息 SN-PatchGAN鉴别器
在线阅读 下载PDF
基于混合扩张卷积和注意力的黄瓜病害严重度估算方法 被引量:9
16
作者 李凯雨 朱昕怡 +1 位作者 马浚诚 张领先 《农业机械学报》 EI CAS CSCD 北大核心 2023年第2期231-239,共9页
自动和准确地估计病害的严重度对病害管理和产量损失预测至关重要。针对传统病害严重度估算步骤复杂且低效,难以实现在田间场景下精准估算问题,提出了一种基于混合扩张卷积和注意力机制改进UNet(Mixed dilated convolution and attentio... 自动和准确地估计病害的严重度对病害管理和产量损失预测至关重要。针对传统病害严重度估算步骤复杂且低效,难以实现在田间场景下精准估算问题,提出了一种基于混合扩张卷积和注意力机制改进UNet(Mixed dilated convolution and attention mechanism optimized UNet,MA-UNet)的病害严重度估算方法。首先,针对病斑尺寸不一、形状不规则问题,提出混合扩张卷积块(Mixed dilation convolution block,MDCB)增加感受野并保持病斑信息的连续性,提升病斑分割精度。其次,为了克服复杂背景的影响,利用注意力机制(Attention mechanism)对空间维度和通道维度进行相关性建模,获得每个像素类内响应和通道间的依赖关系,缓解背景对网络学习带来的影响。最后,计算病害分割图中病斑像素与叶片像素的比率来获得严重度。基于田间条件下收集的黄瓜霜霉病和白粉病图像进行了验证,并与全卷积网络(Fully convolutional network,FCN)、SegNet、UNet、PSPNet、FPN、DeepLabV3+进行比较。结果表明,MA-UNet优于比较方法,能够满足复杂环境下健康叶片和病斑的分割需求,平均交并比为84.97%,频权交并比为93.95%。基于MA-UNet分割结果估计黄瓜叶部病害严重度的决定系数为0.9654,均方根误差为1.0837%。该研究可为人工智能在农业中快速估计和控制病害严重度提供参考。 展开更多
关键词 黄瓜病害 病害严重度 扩张卷积 注意力机制 语义分割
在线阅读 下载PDF
密集连接扩张卷积神经网络的单幅图像去雾 被引量:8
17
作者 刘广洲 李金宝 +1 位作者 任东东 舒明雷 《计算机科学与探索》 CSCD 北大核心 2021年第1期185-194,共10页
针对大多数图像去雾算法模型参数估计准确性差及色彩失真等问题,提出了一种端到端的密集连接扩张卷积神经网络。首先,通过使用多层密集连接结构来增加网络的特征利用率,避免网络加深时的梯度消失现象。其次,通过在密集块中使用不同扩张... 针对大多数图像去雾算法模型参数估计准确性差及色彩失真等问题,提出了一种端到端的密集连接扩张卷积神经网络。首先,通过使用多层密集连接结构来增加网络的特征利用率,避免网络加深时的梯度消失现象。其次,通过在密集块中使用不同扩张率的扩张卷积,使网络在充分聚合上下文特征信息时不损失空间分辨率,并避免了网格伪影的产生。最后,为了提高算法的去雾能力,将该网络划分为多个阶段,并在每个阶段引入侧输出模块,从而获得更精确的特征信息。实验结果表明,所提出的去雾算法无论是在合成数据集上还是在真实数据集上都取得了较好的去雾效果,恢复的色彩更接近无雾图像,并且定量评价指标峰值信噪比(PSNR)和结构相似性(SSIM)均优于其他对比方法。 展开更多
关键词 图像去雾 卷积神经网络(CNN) 密集连接 扩张卷积
在线阅读 下载PDF
基于多尺度扩张卷积神经网络的城中村遥感识别 被引量:5
18
作者 冯权泷 陈泊安 +3 位作者 牛博文 任燕 王莹 刘建涛 《农业机械学报》 EI CAS CSCD 北大核心 2021年第11期181-189,218,共10页
城中村是我国快速城市化进程中的一个特殊产物,通常存在人口密集、建筑私自改造等问题。开展城中村的识别和监测对城乡统筹规划以及精细化治理等具有重要意义。基于深度学习提出了一种新的城中村遥感识别模型,该模型包括一个多尺度扩张... 城中村是我国快速城市化进程中的一个特殊产物,通常存在人口密集、建筑私自改造等问题。开展城中村的识别和监测对城乡统筹规划以及精细化治理等具有重要意义。基于深度学习提出了一种新的城中村遥感识别模型,该模型包括一个多尺度扩张卷积模块和一个非局部特征提取模块,前者能够聚合多层级空间特征以适应城中村形状、尺度的变异性;后者用于提取全局语义特征以提高城中村的类间可分性。选取北京市二环与六环之间的区域作为研究区,实验结果表明本文模型取得了较好的识别效果,总体精度可达94.27%,Kappa系数为0.8839,且效果优于传统模型。本文研究表明,基于多尺度扩张卷积神经网络进行城中村遥感识别是可行且有效的,可为城乡统筹规划提供精确的城中村空间分布数据。 展开更多
关键词 城中村 场景识别 扩张卷积神经网络 深度学习
在线阅读 下载PDF
基于扩张卷积的注意力机制视频描述模型 被引量:7
19
作者 王金金 曾上游 +1 位作者 李文惠 张介滨 《电子测量技术》 北大核心 2021年第23期99-104,共6页
针对视频描述过程中视觉特征和词特征关联度不足、训练效率低、生成的自然语言出现错误和指标分数不高的问题,提出了一种基于扩张卷积的注意力机制视频描述模型。在模型的编码阶段,采用Inception-v4对视频特征进行编码,然后将编码后的... 针对视频描述过程中视觉特征和词特征关联度不足、训练效率低、生成的自然语言出现错误和指标分数不高的问题,提出了一种基于扩张卷积的注意力机制视频描述模型。在模型的编码阶段,采用Inception-v4对视频特征进行编码,然后将编码后的视觉特征和词特征输入到基于扩张卷积的注意力机制中,最后通过长短期记忆网络进行解码,生成视频的自然描述语句。在视频描述公共数据集MSVD上进行对比实验,通过评价指标(BLEU、ROUGE_L、CIDEr、METEOR)对模型进行验证,实验结果表明,基于扩张卷积的注意力机制视频描述模型在各个指标上都有明显提升,对比基线模型SA-LSTM(Inception-v4),在BLEU_4、ROUGE_L、CIDEr和METEOR指标下分别提升了4.23%、4.73%、2.11%和2.45%。 展开更多
关键词 视频描述 Inception-v4 长短期记忆网络 扩张卷积 注意力机制
在线阅读 下载PDF
基于扩张卷积特征自适应融合的复杂驾驶场景目标检测 被引量:4
20
作者 黄文涵 殷国栋 +2 位作者 耿可可 庄伟超 徐利伟 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2021年第6期1076-1083,共8页
针对复杂驾驶场景下的目标检测问题,提出一种基于扩张卷积特征自适应融合的目标检测算法.采用单阶段目标检测网络RetinaNet作为基本框架,其包含卷积特征提取、多尺度特征融合以及目标分类与回归子网.为提高网络对多尺度特征的提取能力,... 针对复杂驾驶场景下的目标检测问题,提出一种基于扩张卷积特征自适应融合的目标检测算法.采用单阶段目标检测网络RetinaNet作为基本框架,其包含卷积特征提取、多尺度特征融合以及目标分类与回归子网.为提高网络对多尺度特征的提取能力,设计了基于不同扩张率组合的残差卷积分支模块,以获取不同感受野下的目标特征图;然后,将不同尺度下的特征通过网络自适应学习的参数融合后输出,用于后续的目标预测;最后在大规模且多样化的复杂驾驶场景数据集BDD100K上进行实验.结果表明,利用扩张残差卷积分支模块与特征自适应融合算法能够分别将网络的平均精度均值由0.330提升至0.338与0.344,并在采用扩张卷积特征自适应融合的情况下达到了0.349.所提算法能够有效提升目标检测算法在复杂驾驶场景下的检测性能. 展开更多
关键词 智能驾驶 目标检测 扩张卷积 特征自适应融合
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部